

STUDY ON FACTORS AFFECTING URBAN SUSTAINABLE DEVELOPMENT IN DA LAT CITY, LAM DONG PROVINCE

Nguyen Hoang Khanh Linh^{1,}*, Nguyen Bich Ngoc², Pham Thi Thao Hien², Hoang Minh Ngoc³, Ho Huu Yen Minh¹, Nguyen Quang Tan¹, Tran Cong Anh¹, Nguyen Anh Tuan⁴

¹International School, Hue University, 1 Dien Bien Phu St., Hue, Vietnam ² University of Agriculture and Forestry, Hue University, 102 Phung Hung St., Hue, Vietnam ³ Construction inspection and consulting center – Department of Construction, 36 Tran Phu, Da Lat, Vietnam ⁴ School of Hospitality and Tourism - Hue University, 22 Lam Hoang St., Hue, Vietnam * Correspondence to Nguyen Hoang Khanh Linh <nhklinh@hueuni.edu.vn> (Received: August 1, 2024; Accepted: November 29, 2024)

Abstract. This study aims to build a set of environmental integrity indexes (EII) for urban planning and development in Da Lat city, Lam Dong province. The research methods include data collection method, interview survey method, data processing method, data analysis method and regression analysis on SPSS software to process data. The research results determines the influence of EII on sustainable urban development with heritage-specific properties in Da Lat city, ranked in order of impact level from largest to smallest: the most important level is of infrastructure development and architecture and urban landscape (β = 0.205), followed by Management (β = 0.115 heritage); Population group (β = 0.087); Group of historical roles and heritage factors in urban function (β = 0.062); and Group of Economy and The quantity, scale of heritage, relics have the same impact level (β = 0.058). Thus, it can be seen that for an urban area with specific characteristics of heritage, together with the socio-economic development of Da Lat, however, preserving the local cultural heritage is the most important. Regarding heritage characteristics in long-standing artistic architecture associated with urban development, the construction and development of infrastructure and urban architecture and landscape will interrupt the city's long-standing architectural heritage.

Keywords: Environmental integrity index, heritage city, Da Lat

1 Introduction

In Vietnam, urbanization is happening rapidly and tends to explode in the current period. Moreover, Vietnam is identified as the leading country in terms of urbanization speed in Southeast Asia [1, 2]. Therefore, the issues related to urbanization are being identified by the government as one of the top priorities of the national socio-economic development strategy 2011-2020, emphasizing "step by step complete construction of Vietnam's urban system according to the urban network model; to have appropriate, synchronous and modern technical and social infrastructure; to have a good urban environment and quality of life; to have an advanced urban architecture and rich in identity" [3]. However, like the common problem of other developing

countries, some gaps have emerged in the current urbanization process in Vietnam. Along with lack of infrastructure, traffic congestion, environmental degradation, and land use planning that is still fragmented or influenced by the subjective opinions of leaders have become major problems that cities and towns face in development [4]. Therefore, developing cities in the direction of eco-friendliness and sustainability is a global trend. Planning in general and urban planning, in particular, is an integrated science, which requires an interdisciplinary approach with a far-reaching vision, and close and accurate calculations in order to harmoniously resolve the relationships of different stakeholders [5]. Urban space planning and organization is a mixture of cultural horizons, cultural philosophies, arts and sciences [6]. With such importance, domestic scientific researchers have begun to conduct specific studies. Also, the current urban plans have been considered feasible development goals and contents. However, most of the studies only state spatial development orientation without accompanying spatial planning, as well as lack or show unanimity of indicators for assessing environmental integrity (economic, social, and ecological) assessment [1]. As a famous tourist city in Vietnam, Da Lat is currently facing many challenges in terms of urban planning, due to population pressure as well as in terms of tourism (4 million visitors per year). Da Lat is entangled in a vicious cycle between conservation and development. For sustainable development, Da Lat must maintain its identity as a heritage city. Da Lat is setting great ambitions in becoming the capital of domestic tourism and attracting international tourists in the future, and at the same time, building its heritage characteristics. Despite that, development in a sustainable way is still a big challenge for its government and people [7]. Stemming from the above practice, it is necessary to carry out the study "Study on factors affecting sustainable urban development in Da Lat city, Lam Dong province" to contribute to the scientific and practical basis for sustainable development planning in urban areas of Vietnam.

2 Research methods

2.1 Data collection

To carry out this study, the necessary secondary data in the study area were investigated and collected, including domestic and foreign documents related to the research topic; documents on natural, economic and social conditions; statistics data over periods; spatial data; legal documents; historical documents and spatial data. from 2022-2023; interview survey data conducted in 2023. In addition, the study focuses on understanding the proposed set of environmental integrity indicators (EII) applied in several countries around the world. From that basis, the study selects appropriate indicators to build an EII for Da Lat city in the direction of sustainable heritage urban development.

2.2 Consultation, survey and interview

To increase the practicality when reflecting on the real situation of heritage urban development as well as increase the persuasion of the solutions, the study uses survey tools by questionnaire and consultation with experts as follows:

– Expert consultation method: This method is used to consult experts and professionals from relevant departments. The consultation aims to identify the main groups of factors affecting the sustainable development of heritage urban areas in Da Lat city through group discussions. The consultation units in Da Lat city include 15 people from: the Department of Construction Management and Urban Infrastructure, the Department of Natural Resources and Environment of the City, the Department of Heritage Management of Da Lat city, the Department of Culture and Information and the City People's Committee.

– Semi-structured interview: This method is used to interview stakeholders using a predesigned questionnaire.

The interviewees are scientists, staff with expertise in heritage cities and related professionals to find out the impact of EII on sustainable development in heritage cities in Da Lat city. The proposed research has 28 observed variables (questions), so the sample size is at least 140 votes. The method of determining the sample size is according to the study of Hair et al. [8], in which the sample size for factor analysis (EFA) is at least 5 times the total number of observed variables.

2.3 Synthetic assessment method, data processing, SWOT analysis

This method is used in all parts of the study. Qualitative and quantitative analysis is used to describe or synthesize, digitize, or graphically represent the collected data. From there, there is a basis for clarifying the nature of heritage urban areas in terms of socio-economic terms with specific numbers, assessing the current status of heritage urban development, the management of local authorities on investment in heritage urban development, forecasting strategies and planning to develop heritage urban areas in a sustainable way.

In addition, based on the natural, economic, social and cultural characteristics of each research site, the study uses the influencing factor analysis tool to determine the degree of influence of the component index in the set of EII on the goal of heritage urban development for Da Lat city. From there, this study proposes a set of environmental integrity indicators for the study area. The study uses the SWOT analysis method to identify strengths (S - Strengths), weaknesses (W - Weaknesses), opportunities (O - Opportunities) and challenges (T - Threats) in assessing the sustainability of heritage urban development plans. SWOT's originator, Robert Franklin Stewart, emphasized the crucial role that creativity plays in the planning process [9].

2.4 Determining the set of environmental integrity indicators

For Da Lat city to achieve the EII, it is necessary to ensure the group of socio-economic and environmental indicators, and at the same time to ensure that the whole urban index group has specific characteristics of unique culture and heritage.

The method of building a set of EII is determined based on the assessment method prescribed in Resolution No. 1210/2016/UBTVQH13 of the National Assembly Standing Committee on urban classification [10]. The process of building a set of environmental integrity indicators is shown in Figure 1.

Figure 1. The process of building a set of environmental integrity indexes in Da Lat city

2.5 Identify indicators affecting sustainable urban development

This study employs a selection of indicators affecting heritage urban development in combination with descriptive statistics, correlation analysis, EFA, and multiple linear regression analysis.

Psychologist and statistician Charles Spearman is often credited with foundational work in factor analysis in the early 20th century in his work on the underlying dimensions of intelligence. Its use was hampered by onerous hand calculations until the introduction of statistical computing. Since then the technique has flourished. There are two main types of factor analysis: exploratory and confirmatory. In EFA, each observed variable is potentially a measure of every factor, and the goal is to determine relationships (between observed variables and factors) are strong.

Multiple linear regression analysis, a term first used by Karl Pearson in 1908, is a statistical technique that models the relationship between one dependent variable and two or more independent variables. This method allows researchers to predict or explain the value of a quantitatively measured criterion (outcome/dependent) variable using a combination of several quantitative (metric) or dichotomous variables.

3 Research results and discussion

3.1 Identify factors affecting sustainable urban development

Identify influencing factors

Based on the consultation results of experts and specialized staff from relevant departments and a set of environmental integrity indexes is determined based on the assessment method prescribed in Resolution No. 1210/2016/UBTVQH13 of the National Assembly Standing Committee on urban classification [10], the results show that there are 06 main groups of factors affecting the sustainable urban development in Da Lat city, including (i) Economy; (ii) Population; (iii) Level of infrastructure development and urban architecture and landscape; (iv) Historical role and heritage element in urban function; (v) Quantity and scale of heritage and monuments; and (vi) Heritage management and conservation. Details of each group of factors are shown in Table 1.

No.	Main factor	Variable name	Element	Question	Note
1		KT1	Annual per capita income compared to the whole country (times)	2	
		KT2	Economic restructuring	3	
		KT3	Average economic growth in the last 3 years (%)	4	
	Economy	KT4	The rate of poor households (%)	5	
		KT5	Non-farm employment rate	9	
		KT6	High-tech agricultural production in the direction of green growth, associated with the development of agri-tourism model	18	
2	Population	DS1	Annual population growth rate (including natural and mechanical growth) (%)	6	
	r op unuton	DS2	Population size	7	Group of
		DS3	Population density	8	economic -
3		TDPTCS1	Ratio of traffic land to construction land (%)	13	social - environme
	Level of infrastructu re developme nt and	TDPTCS2	Traffic land area per population (m2/person)	14	ntal indicators
		TDPTCS3	Percentage of households supplied with clean and hygienic water (%)	15	
		TDPTCS4	Standards for rainwater drainage and anti-flood systems	10	
		TDPTCS5	Standards on collection and treatment of wastewater and waste	11	
	urban architecture	TDPTCS6	Public green land systems	12	
	and landscape	TDPTCS7	General planning of the city and its vicinity to 2030, vision to 2050	16	
	Ĩ	TDPTCS8	The restoration or construction of green spaces	17	
		TDPTCS9	Types of imported architecture that do not make a new feature for Da Lat urban area	24	
4	The role of history and	VTLS1	Functions of cities in the history of national urban system development.	25	The urban index
	heritage elements in urban function	VTLS2	The functional role of heritage elements in the development of regional and national urban systems (identified in provincial planning projects, urban planning).	26	group has specific characteris tics in terms of

No.	Main factor	Variable name	Element	Question	Note
		VTLS3	City that has a long history of development	1	unique culture and
5		SLQM1	Number of heritages works and relics preserved annually	19	heritage
	Quantity and scale of heritage and monuments	SLQM2	Total area of core conservation zone of all national historical, cultural and heritage sites at the national level or higher	27	
		SLQM3	Percentage of monuments and heritage works exploited and used	22	
6		CTQLBT1	Planning to preserve heritage and monuments	21	-
	Heritage	CTQLBT2	Ratio of expenses for conservation work / Investment in urban development	28	
	managemen t and conservatio n	CTQLBT3	The deduction of revenue from tourism activities for the conservation of monuments/heritage	20	
		CTQLBT4	The conservation of urban architectural heritage and natural landscape in Da Lat that has not been synchronized and comprehensive	23	

Source: Results of processing interview survey data, 2023

Check the reliability of Cronbach's Alpha scale

The survey content is about the level of influence of environmental integrity indicators on the urban heritage development of Da Lat city. To evaluate the reliability, the study used the Cronbach's Alpha coefficient for the groups of factors. This method shows that among the observed variables of a factor, which variables have contributed to the measurement of factors, and which variables have not. The Cronbach's Alpha results of the good factor show that the observed variables listed are very good. From the characteristics of the primary factor, we have a good scale for this primary factor. Since then, the construction of a questionnaire to understand the impact of EII on sustainable development in heritage cities focuses only on groups of decisive indicators and focuses on an in-depth analysis of the influence of these indicators. Based on the results of consultations about the influence of EII on sustainable urban development in Da Lat city, the study determines the Cronbach's Alpha coefficient of the scale of factors in the EII affecting the sustainable development of Da Lat urban area (Table 2).

Observed variables	Scale average if without variables	Scale variance if without variables	Variable-total correlation	Cronbach's Alpha if without variables
1. Economics: Cronbac	h's Alpha = 0.864			
KT1	17.24	16.710	0.559	0.863
KT2	17.48	15.616	0.730	0.832
KT3	17.58	19.097	0.458	0.875
KT4	17.25	15.214	0.744	0.829
KT5	17.18	15.532	0.732	0.832
KT6	17.37	14.886	0.763	0.825
2. Population: Cronbac	h's Alpha = 0.927			
DS1	6.91	6.193	0.886	0.866
DS2	6.80	5.867	0.924	0.833
DS3	6.46	7.460	0.756	0.966
3. Infrastructure and an	chitecture developm	nent level, urban land	lscape: Cronbach's	Alpha = 0.884
TDPTCS1	28.88	35.033	0.539	0.880
TDPTCS2	28.48	32.856	0.805	0.856
TDPTCS3	28.47	34.406	0.696	0.866
TDPTCS4	28.47	34.406	0.696	0.866
TDPTCS5	28.42	32.694	0.653	0.871
TDPTCS6	28.28	34.109	0.727	0.864
TDPTCS7	28.19	36.715	0.432	0.888
TDPTCS8	28.39	34.581	0.718	0.865
TDPTCS9	28.12	37.080	0.480	0.883
4. Historical role and h	eritage factor in urba	an function: Cronbac	h's Alpha = 0.864	
VTLS1	6.83	4.312	0.761	0.793
VTLS2	7.00	4.636	0.814	0.747
VTLS3	7.23	4.985	0.661	0.881
5. Quantity and scale of	f heritage and monu	ments: Cronbach's A	lpha = 0.858	
SLQM1	7.16	3.098	0.722	0.812
SLQM2	7.28	2.577	0.790	0.745
SLQM3	7.29	2.968	0.692	0.838

Table 2. Cronbach's Alpha coefficient of the scale of factors in the EII affecting sustainable urban

 development in Da Lat

Jos.hueuni.edu.vn

Observed variables	Scale average if without variables	Scale variance if without variables	Variable-total correlation	Cronbach's Alpha if without variables
6. Heritage managemen	nt and conservation:	Cronbach's Alpha =	0.727	
CTQLBT1	10.17	6.173	0.539	0.654
CTQLBT2	10.15	5.992	0.718	0.548
CTQLBT3	10.11	7.787	0.271	0.804
CTQLBT4	9.93	6.577	0.594	0.624

Source: Results of processing interview survey data, 2023

The data of Table 2 show the results of the final scale test of the factors (component questions). The data show that all scales have Cronbach's Alpha greater than 0.6, and all observed variables have a total correlation coefficient greater than 0.3. Thus, the scales are reliable, and 28 variables are kept for factor analysis.

Exploratory factor analysis (EFA)

As mentioned above, testing for the internal consistency of the sample data using Cronbach's Alpha coefficient shows more than 0.70 uniform results for the composite variables. Factor analysis is used to analyze and measure structural validity to measure the consistency between the questions and the theoretical constructs relevant to the study.

The remaining factors in the model have coefficients KMO = 0.717 in the range [0; 1], from which it can be concluded that the results of the EFA factor analysis are consistent with the actual data. The Sig value. of Bartlett test is 0.000 less than 0.05, so it can be concluded that observed variables are correlated with each other in each factor group. According to the principles of exploratory factor analysis EFA, the results of exploratory factor analysis of independent variables show that in the factor rotation matrix table, there are variables with factor loading coefficients less than 0.5. The study removes variables with factor loading coefficients less than 0.5 in turn until there are no variables with loading coefficients less than 0.5. The results show that no variables are excluded from the model.

KMO and Bartlett's Test		
Kaiser-Meyer-Olkin Measure of Sam	pling Adequacy	0.717
	Approx. Chi-Square	2076.330
Bartlett's Test of Sphericity	DF	378
	Sig.	0.000

Sig.

Table 3. The results of testing the fit of the independent variables in the model

Source: Results of processing interview survey data, 2023

Table 4 shows the results of testing the extracted variance of the independent factors. The results show that the total variance extracted for the remaining factors in the factor analysis process is 71,481% (greater than 50%), which proves that 71,481% of the changes in the factors are

		Initial Eigenv	alues	Extrac	tion Sums of Squa	ared Loadings
Components	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.020	20.081	20.081	5.020	20.081	20.081
2	4.161	16.645	36.726	4.161	16.645	36.726
3	2.636	10.546	47.272	2.636	10.546	47.272
4	2.293	9.170	56.442	2.293	9.170	56.442
5	2.153	8.613	65.055	2.153	8.613	65.055
6	1.606	6.425	71.481	1.606	6.425	71.481
7	0.936	3.744	75.224			
8	0.816	3,266	78.490			
9	0.703	2.811	81.301			
10	0.601	2.406	83.706			
11	0.561	2.243	85.949			
12	0.506	2.024	87.973			
13	0.445	1.780	89.753			
14	0.391	1.564	91.317			
15	0.368	1.472	92.789			
16	0.307	1.227	94.015			
17	0.261	1.042	95.057			
18	0.233	0.933	95.991			
19	0.208	0.832	96.823			
20	0.193	0.772	97.595			
21	0.174	0.695	98.290			
22	0.166	0.663	98.953			
23	0.123	0.490	99.443			
24	0.090	0.361	99.805			
25	0.049	0.195	100.000			

Table 4 . The extracted variance results and the Engivalues coefficients of the independent variables
in the model

Source: Results of analysis and processing of interview survey data, 2023

explained by the observed variables in the model. The coefficients Eigenvalues represent the variation explained by each factor 1.606 greater than 1, or in other words, the factors drawn have the best summary significance. In addition, the data shows that the factor loading coefficient value of each component question corresponding to each factor is greater than 0.5. Therefore, the scales meet the requirements to perform the next analysis process.

3.2 Analyze the influence of environmental integrity indicators on sustainable urban development

From the results of the preliminary investigation, there are 6 main factors (Table 2): Economy; Population; Level of infrastructure development and urban architecture and landscape; Historical role and heritage element in urban function; Quantity and scale of heritages and relics; Heritage management and conservation. The study creates representative factors based on the results of the rotation matrix EFA. After conducting EFA, the study finds 2 main factors affecting sustainable urban development. Table 5 is a summary table of factors after EFA analysis and encoded representative factors.

The results of the correlation between the dependent variable and the independent variable in the regression model are presented in Table 6.

The results of Pearson analysis show that independent variables have a positive impact on sustainable urban development. This is because all Sig coefficients. of the independent variables have a value < 0.05 and the correlation coefficients (Pearson Correlation) of the independent

Factor	Observed variables	Factor name	Representative variable
1	KT1, KT2, KT3, KT4, KT5, KT6	Economic index group	KT
2	DS1, DS2, DS3	Population index group	DS
3	TDPTCS1, TDPTCS2, TDPTCS5, TDPTCS6, TDPTCS7, TDPTCS8, TDPTCS9	Group of indicators of the level of infrastructure development and urban architecture and landscape	TDPTCS1
4	VTLS1, VTLS2, VTLS3	Historical role index group and heritage factor in urban function	VTLS
5	SLQM1, SLQM2, SLQM3	Group of indicators on the Quantity and scale of heritage and monuments	SLQM
6	CTQLBT1, CTQLBT2, CTQLBT4	Group of indicators for heritage management and conservation	CTQLBT

Table 5. Summary of representative factors after EFA analysis

Source: Results of processing interview survey data, 2022

		KT	DS	VTLS	TDPTCS	SLQM	CTQLBT
DTDV	Pearson Correlation	0.438**	0.710**	0.629**	0.788**	0.462**	0.658**
DTBV –	Sig. (2-tailed)	0.000	0.000	0.000	0.000	0.000	0.000

Table 6. Correlation analysis between dependent and independent variables

**: Correlation coefficient with significance level 0.01 (2-tailed).

variables and dependent variables are positive. The factor variables in the model are eligible to perform regression analysis.

The results of ANOVA analysis in Table 7 show that the F = 82,085 statistic is calculated from the adjusted R-Square value of the full model, Sig value. = 0.000 < 0.05. Therefore, this study rejects the hypothesis H0: R2 = 0 or in other words, the model exists. Also in the above table, the Adjusted R² coefficient is 0.778, which means that 77.8% has an influence on the sustainable development of heritage urban areas in the study area. This is explained by the independent variables in the model. The remaining 22.2% is explained by other factors that have not been included in the model. Thus, it can be concluded that the given model is consistent with the actual

No.	Independent variables	Unnormalized regression coefficient (β)	Normalized Regression (Beta)	Sig.	VIF
1	(Constant)	-1.261		0.000	
2	Economic index group	0.058	0.103	0.022	1.226
3	Population index group	0.087	0.200	0.000	1.960
4	Group of indicators of the level of infrastructure development and urban architecture and landscape	0.205	0.383	0.000	2.192
5	Historical role index group and heritage factor in urban function	0.062	0.142	0.009	1,772
6	Group of indicators on the Quantity and scale of heritage and monuments	0.058	0.107	0.018	1.257
7	Group of indicators for heritage management and conservation	0.115	0.242	0.000	1.576
F stat	istic = 82,085; Sig. = 0.000		Adjusted R – s	quared = 0	.778
Durb	in – Watson = 1.975		Dependent van (* Sustainable (BV

Table 7. Re	gression	function	fit test
-------------	----------	----------	----------

Source: Results of processing interview survey data, 2023

data. In addition, The Variance Inflation Factor (VIF) of the independent variables is all less than 10, so the regression model does not have multicollinearity. Sig. value of regression coefficients are all lower than 0.05. Therefore, all dependent variables are included in the model.

Assumption of normal distribution of residuals: Theoretically, the normal distribution is a distribution with a mean of 0 and variance equal to 1. As shown in Figure 3, the normalized residuals are distributed according to the shape of the normal distribution. The Histogram shows a normal distribution curve superimposed on the histogram. This curve has a bell shape consistent with the graph of the standard lung segment, with average Mean = 9.76E - 16 close to 0, standard deviation Std. Dev = 0.978 is close to 1. So the residual distribution is approximately normal. Therefore, it can be concluded that the assumption of normal distribution of residuals is not violated.

The results in the table show that the Durbin Watson coefficient of the model is 1.975. After looking up the Durbin Watson table with the number of independent variables k'= 6, the number of samples n = 140 (100 < n < 150) results in dL = 1.441, dU = 1.647, inferring 4-dU = 2.353. The Durbin-Watson test shows that 1.647 (dU) < d = 1.975 < 2.353 (4-dU). Thus, the errors are independent of each other. There is no autocorrelation between the residuals. Thus, the study results show that there are 6 factors affecting sustainable urban development: (1) Economy, (2) Population, (3) Level of infrastructure development and architecture, urban landscape, (4) Historical role and heritage factors in urban function, (5) Quantity and scale of heritage and monuments; (6) Management and conservation of heritage. The study results also show that the

Figure 3. Normal distribution of residuals

Source: SPSS data processing results, 2023

Independent variables	Normalized Regression (Beta)	Rank
Economic index group	0.103	6
Population index group	0.200	3
Group of indicators of the level of infrastructure development and urban architecture and landscape	0.383	1
Historical role index group and heritage factor in urban function	0.142	4
Group of indicators on the Quantity and scale of heritage and monuments	0.107	5
Group of indicators for heritage management and conservation	0.242	2

Table 8. The level of influence of factors

Source: Results of processing interview survey data, 2023

importance of factors affecting sustainable urban development is different, which is shown through the importance of Beta coefficients in the regression equation as follows:

EIA = -1.261 + 0.058*KT + 0.087*DS + 0.205*TDPTCS + 0.062*VTLS + 0.058*SLQM + 0.115*CTQLBT + 0.058*SLQM + 0

4 Conclusion

The study to determine the factors affecting the sustainable urban development in Da Lat city, Lam Dong province shows the degree of impact of EII on sustainable urban development with heritage-specific properties ranked in order of impact from largest to smallest: Level of urban infrastructure and architecture development, urban landscape ($\beta = 0,205$); heritage management and conservation ($\beta = 0.115$); Population group ($\beta = 0.087$); Group of historical roles and heritage factors in urban function ($\beta = 0.062$); and Group of Economy, Group of quantity, scale of heritage, relics have the same impact level ($\beta = 0.058$). Thus, for an urban area with specific characteristics of heritage, parallel with the socio-economic development of Da Lat city, however, preserving the local cultural heritage is the most important. Regarding heritage characteristics in the long-standing artistic architecture and architecture and urban landscape will interrupt the city's long-standing architectural and landscape heritage. In the face of development pressure, this is a two-way relationship and mutual support in the process of sustainable urban development in Da Lat city and in other cities of Vietnam in general.

References

- 1. Hoang Ba Thinh, Doan Thi Thanh Hien (2015), Urbanization in Vietnam today. Vietnam Journal of Social Sciences, 5(90).
- 2. Doan Thanh (2018), Vietnam ranks first in Southeast Asia in terms of urbanization rate. Economic and urban magazine. Accessed September 7, 2019 from the source http://tinhtedothi.vn/viet-nam-dung-dau-dong-nam-a-ve-toc-do-do-thi-hoa-318653.html
- 3. Prime Minister (2009), Decision No. 445/QD-TTg dated April 7, 2009 of the Prime Minister approving the adjustment of orientation of the Master plan on development of urban system in Vietnam to 2025 with a vision to 2050.
- Le Khac Hiep (2019), Sustainable and harmonious urban development. Date of accessed 30/7/2024. http://www.hids.hochiminhcity.gov.vn/c/document library/get_file?uuid=e1a10ffd-4fde-46be-9a16-c71c9041f47b&groupId=13025
- 5. World Bank (2018), Review: Update on economic development. Special Topic: Trade Facilitation by Streamlining and Improving Transparency of Measures.
- 6. Phung Huu Phu (2009), Urbanization in Vietnam From the perspective of agriculture, rural areas, farmers. Propaganda Magazine, No. 3.
- Khuat Tan Hung (2022), It's not easy to become a heritage city, Urban people. Date of accessed 30/7/2024. <u>https://nguoidothi.net.vn/khong-de-de-tro-thanh-do-thi-di-san-33072.html</u>
- 8. Hair, J.F.J., Black, W., Babin, B., Anderson, R., Tatham, R.L. (2006), Mutivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 31.
- 9. Puyt, Richard & Lie, Finn & Wilderom, Celeste (2023), The origins of SWOT analysis, Long Range Planning, 102304.
- 10. Standing Committee of the National Assembly (2016), Resolution No. 1210/2016/UBTVQH13 takes effect from May 25, 2016 on urban classification.