Abstract
This research applies the feedforward artificial neural network (ANN) with a backpropagation algorithm to predict the inflation rate of Vietnam for the year 2022 using a historical dataset from 2000 to 2021. The forecast shows a close similarity to the actual figures, implying that the built-up ANN model is efficient and applicable. The result also points out that money supply is a significant factor in forecasting the inflation rate of Vietnam.References
- B. Soybilgen and E. Yazgan (2017), An evaluation of inflation expectations in Turkey, Cent. Bank Rev., 17(1), doi: 10.1016/j.cbrev.2017.01.001.
- S. G. Cecchetti (1995), Inflation indicators and inflation policy, NBER Macroecon. Annu., 10, 189–219.
- B. Radovanov and A. Marcikić (2011), Uncertainty and disagreement in inflation forecasting, Ekon. misao i praksa, 1, 3–18.
- A. Atkeson and L. E. Ohanian (2001), Are Phillips curves useful for forecasting inflation?, Q. Rev. DC. Nurses. Assoc., 25(1), doi: 10.21034/qr.2511.
- J. J. J. Groen, R. Paap, and F. Ravazzolo (2013), Real-time inflation forecasting in a changing world, J. Bus. Econ. Stat., 31(1), doi: 10.1080/07350015.2012.727718.
- F. Öǧünç et al. (2013), Short-term inflation forecasting models for Turkey and a forecast combination analysis, Econ. Model., 33, doi: 10.1016/j.econmod.2013.04.001.
- Y. C. Chen, S. J. Turnovsky, and E. Zivot (2014), Forecasting inflation using commodity price aggregates, J. Econom., 183(1), doi: 10.1016/j.jeconom.2014.06.013.
- L. Monteforte and G. Moretti (2013), Real-time forecasts of inflation: The role of financial variables, J. Forecast., 32(1), doi: 10.1002/for.1250.
- M. Günay (2018), Forecasting industrial production and inflation in Turkey with factor models, Cent. Bank Rev., 18(4), doi: 10.1016/j.cbrev.2018.11.003.
- M. Marcellino, J. H. Stock, and M. W. Watson (2003), Macroeconomic forecasting in the Euro area: Country specific versus area-wide information, Eur. Econ. Rev., 47(1), doi: 10.1016/S0014-2921(02)00206-4.
- G. Sbrana, A. Silvestrini, and F. Venditti (2017), Short-term inflation forecasting: The META approach, Int. J. Forecast., 33(4), 1065–1081.
- M. G. P. Garcia, M. C. Medeiros, and G. F. R. Vasconcelos (2017), Real-time inflation forecasting with high-dimensional models: The case of Brazil, Int. J. Forecast., 33(3),
- doi: 10.1016/j.ijforecast.2017.02.002.
- J. M. Binner, R. K. Bissoondeeal, T. Elger, A. M. Gazely, and A. W. Mullineux (2005), A comparison of linear forecasting models and neural networks: An application to Euro inflation and Euro Divisia, Appl. Econ., 37(6), doi: 10.1080/0003684052000343679.
- A. Haider and M. N. Hanif (2009), Inflation forecasting in Pakistan using artificial neural networks, Pak. Econ. Soc. Rev., 123–138.
- C. Wang and D. Wu (2010), Modeling China’s inflation linear versus nonlinear method,
- doi: 10.1109/CISE.2010.5677063.
- G. Zhang, B. Eddy Patuwo, and M. Y. Hu (1998), Forecasting with artificial neural networks: The state of the art, Int. J. Forecast., 14(1), 35–62, doi: 10.1016/S0169-2070(97)00044-7.
- N. Apergis (2004), Inflation, output growth, volatility and causality: Evidence from panel data and the G7 countries, Econ. Lett., doi: 10.1016/j.econlet.2003.11.006.
- B. Font and A. J. Grau (2012), Exchange rate and inflation risk premia in the EMU, Quant. Financ., 12(6), 907–931, doi: 10.1080/14697688.2010.488810.
- G. Kwon, L. McFarlane, and W. Robinson (2021), Public Debt, Money Supply, and Inflation: A Cross-Country Study and its Application to Jamaica, SSRN Electron. J., doi: 10.2139/ssrn.910686.
- K. Nam and T. Schaefer (1995), Forecasting international airline passenger traffic using neural networks, Logist. Transp. Rev., 31(3), 239–252.
- T. H. Lee, H. White, and C. W. J. Granger (1993), Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests, J. Econom., 56(3), doi: 10.1016/0304-4076(93)90122-L.
- K. Hornik, M. Stinchcombe, and H. White (1989), Multilayer feedforward networks are universal approximators, Neural Networks, 2(5), 359–366, doi: 10.1016/0893-6080(89)90020-8.
- K. Chakraborty, K. Mehrotra, C. K. Mohan, and S. Ranka (1992), Forecasting the behavior of multivariate time series using neural networks, Neural Networks, 5(6), 961–970, doi: 10.1016/S0893-6080(05)80092-9.
- R. Sharda and R. Patil (1990), Neural networks as forecasting experts: an empirical test, in Proceedings of the International Joint Conference on Neural Networks, 2, 491–494.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 Array