FORECASTING INFLATION RATE USING ARTIFICIAL NEURAL NETWORK: THE CASE OF VIETNAM
PDF

Keywords

artificial neural network
forecasting
inflation
Vietnam

Abstract

This research applies the feedforward artificial neural network (ANN) with a backpropagation algorithm to predict the inflation rate of Vietnam for the year 2022 using a historical dataset from 2000 to 2021. The forecast shows a close similarity to the actual figures, implying that the built-up ANN model is efficient and applicable. The result also points out that money supply is a significant factor in forecasting the inflation rate of Vietnam.
https://doi.org/10.26459/hueunijed.v131i5B.6972
PDF

References

  1. B. Soybilgen and E. Yazgan (2017), An evaluation of inflation expectations in Turkey, Cent. Bank Rev., 17(1), doi: 10.1016/j.cbrev.2017.01.001.
  2. S. G. Cecchetti (1995), Inflation indicators and inflation policy, NBER Macroecon. Annu., 10, 189–219.
  3. B. Radovanov and A. Marcikić (2011), Uncertainty and disagreement in inflation forecasting, Ekon. misao i praksa, 1, 3–18.
  4. A. Atkeson and L. E. Ohanian (2001), Are Phillips curves useful for forecasting inflation?, Q. Rev. DC. Nurses. Assoc., 25(1), doi: 10.21034/qr.2511.
  5. J. J. J. Groen, R. Paap, and F. Ravazzolo (2013), Real-time inflation forecasting in a changing world, J. Bus. Econ. Stat., 31(1), doi: 10.1080/07350015.2012.727718.
  6. F. Öǧünç et al. (2013), Short-term inflation forecasting models for Turkey and a forecast combination analysis, Econ. Model., 33, doi: 10.1016/j.econmod.2013.04.001.
  7. Y. C. Chen, S. J. Turnovsky, and E. Zivot (2014), Forecasting inflation using commodity price aggregates, J. Econom., 183(1), doi: 10.1016/j.jeconom.2014.06.013.
  8. L. Monteforte and G. Moretti (2013), Real-time forecasts of inflation: The role of financial variables, J. Forecast., 32(1), doi: 10.1002/for.1250.
  9. M. Günay (2018), Forecasting industrial production and inflation in Turkey with factor models, Cent. Bank Rev., 18(4), doi: 10.1016/j.cbrev.2018.11.003.
  10. M. Marcellino, J. H. Stock, and M. W. Watson (2003), Macroeconomic forecasting in the Euro area: Country specific versus area-wide information, Eur. Econ. Rev., 47(1), doi: 10.1016/S0014-2921(02)00206-4.
  11. G. Sbrana, A. Silvestrini, and F. Venditti (2017), Short-term inflation forecasting: The META approach, Int. J. Forecast., 33(4), 1065–1081.
  12. M. G. P. Garcia, M. C. Medeiros, and G. F. R. Vasconcelos (2017), Real-time inflation forecasting with high-dimensional models: The case of Brazil, Int. J. Forecast., 33(3),
  13. doi: 10.1016/j.ijforecast.2017.02.002.
  14. J. M. Binner, R. K. Bissoondeeal, T. Elger, A. M. Gazely, and A. W. Mullineux (2005), A comparison of linear forecasting models and neural networks: An application to Euro inflation and Euro Divisia, Appl. Econ., 37(6), doi: 10.1080/0003684052000343679.
  15. A. Haider and M. N. Hanif (2009), Inflation forecasting in Pakistan using artificial neural networks, Pak. Econ. Soc. Rev., 123–138.
  16. C. Wang and D. Wu (2010), Modeling China’s inflation linear versus nonlinear method,
  17. doi: 10.1109/CISE.2010.5677063.
  18. G. Zhang, B. Eddy Patuwo, and M. Y. Hu (1998), Forecasting with artificial neural networks: The state of the art, Int. J. Forecast., 14(1), 35–62, doi: 10.1016/S0169-2070(97)00044-7.
  19. N. Apergis (2004), Inflation, output growth, volatility and causality: Evidence from panel data and the G7 countries, Econ. Lett., doi: 10.1016/j.econlet.2003.11.006.
  20. B. Font and A. J. Grau (2012), Exchange rate and inflation risk premia in the EMU, Quant. Financ., 12(6), 907–931, doi: 10.1080/14697688.2010.488810.
  21. G. Kwon, L. McFarlane, and W. Robinson (2021), Public Debt, Money Supply, and Inflation: A Cross-Country Study and its Application to Jamaica, SSRN Electron. J., doi: 10.2139/ssrn.910686.
  22. K. Nam and T. Schaefer (1995), Forecasting international airline passenger traffic using neural networks, Logist. Transp. Rev., 31(3), 239–252.
  23. T. H. Lee, H. White, and C. W. J. Granger (1993), Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests, J. Econom., 56(3), doi: 10.1016/0304-4076(93)90122-L.
  24. K. Hornik, M. Stinchcombe, and H. White (1989), Multilayer feedforward networks are universal approximators, Neural Networks, 2(5), 359–366, doi: 10.1016/0893-6080(89)90020-8.
  25. K. Chakraborty, K. Mehrotra, C. K. Mohan, and S. Ranka (1992), Forecasting the behavior of multivariate time series using neural networks, Neural Networks, 5(6), 961–970, doi: 10.1016/S0893-6080(05)80092-9.
  26. R. Sharda and R. Patil (1990), Neural networks as forecasting experts: an empirical test, in Proceedings of the International Joint Conference on Neural Networks, 2, 491–494.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array