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SEGRE’S UPPER BOUND FOR THE REGULARITY INDEX  

OF 2 1n   DOUBLE POINTS IN n
P    

Tran Nam Sinh*  

HU – University of Education, 34 Le Loi, Hue, Vietnam 

Abstract: We prove the Segre’s upper bound for the regularity index of 2 1n   double points that do not 

exist n+1 points of them lying on an ( 2)n  -plane in .
n

P  

1 Introduction 

Let 1,..., sP P  be a set of distinct points in a projective space with n -dimension := ,
n n

kP P  with k  as 

an algebraically closed field. Let 1,..., s   be the homogeneous prime ideals of the polynomial 

ring 0:= [ ,..., ]nR k x x  corresponding to the points 1,..., .sP P  Let 1,..., sm m  be positive integers. Put 

1 1
1 1= ,
m m

I     denote 1 1= s sZ m P m P   the zero-scheme defined by .I  We call Z  to be a set 

of fat points. 

A set of s  fat points in n
P  is said to be equimultiple if 1 = = = .sm m m . In case 

1 = = =2,sm m  a set of fat points  

1=2 2 sZ P P   

is said to be a set of s  double points in .
n

P  

The homogeneous coordinate ring of Z  is  

1
1= / ( ).
m m

s
sA R     

The ring 0= t tA A  is a one-dimension k -graded Cohen-Macaulay algebra whose 

multiplicity is 
=1

1
( ) = .

s
i

i

m n
e A

n

  
 
 

  The Hilbert function ( )=dimkA tH t A  strictly increases until it 

reaches the multiplicity ( ),e A  at which it stabilizes. The regularity index of Z  is defined to be 

the least integer t  such that ( ) = ( ),AH t e A  and we denote it by ( )reg Z  or ( ).reg A  It is not easy to 

count the regularity index of a set of fat points. Thus, one usually finds a sharp upper bound for 
( ).reg Z  

In 1961, Segre [6] showed the upper bound for regularity index of generic fat points 

1 1= s sZ m P m P   in 2
:P   
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1
1 2( ) max{ 1,[ ]}

2

sm m
reg Z m m

 
    

with 1 .sm m   This bound was later extended for fat points in general position in n
P  by 

Catalisano [3] 

1
1 2

2
( ) max{ 1,[ ]}.sm m n

reg Z m m
n

   
    

In 1996, Trung gave the following conjecture on a sharp upper bound for regularity index 

of arbitrary fat points in :
n

P  

( ) max{ | =1,..., },jreg Z T j n  

where  

=1

1

2

=max{[ ] | ,..., lieonanj plane},

q

i
l

l
j i i

q

m j

T P P
j

 




 

this bound is said to be Segre’s upper bound. 

The conjecture of Trung is more general and better than the previous results. However, it 

is only proved right in projective spaces with dimension 3n   [5], [7], [8], for the case of a set of 

double points 1=2 2 sZ P P   in n
P  with dimension = 4n  [9] and for a set of 2s   fat points 

which is not on an ( 1)s  -space [10]. Recently, Ballico et al  have proved the case 3n   arbitrary 

fat points in n
P  [2]. Up to now, there have not been any results of Trung’s conjecture published 

yet. 

In this article, we prove the conjecture of Trung right in the case 2 1n   double points that 

does not exist 1n   points lying on an ( 2)n  -plane in .
n

P  The case 3s n   in n
P  was proved 

right by Thien [10], Ballico et al [2]. That Trung’s conjecture, 3 < < 2 1n s n   is proved right 

remains an open question. 

2 Segre’s upper bound for the regularity index of 2 1n   double points in 
n

P   

From now on, we consider a hyperplane and its identical defining linear form. The following 

propositions are the important results for the proof of Segre’s upper bound. 

Proposition 2.1. Let 1 2 1={ ,..., }nX P P   be a set of 2 1n   distinct points and there do not exist 1n   points 

of X  lying on an ( 2)n  -plane in .
n

P  Let i  be the homogeneous prime ideal corresponding 

, =1,...,2 1.iP i n   Let  

1 2 1=2 2 .nZ P P    
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Put  

1

1
=max{[ (2 2)] | ,..., lieonanj plane},j i i

q
T q j P P

j
    

=max{ | =1,..., }.Z jT T j n  

Then, there exists a point 
0
iP X  such that  

2

0
( / ( )) ,i Zreg R J T   

where  

2

0

= .k
k i

J


  

Proof: We denote | |H  by the number points of X  lying on an j -plane .H  The proposition was 

proved in projective spaces with dimension 4n   [5], [7], [8], [9]. Thus, we will prove the case 

with dimension 5.n   

We can see that there are ( 1)n  -planes 1,..., dH H  in n
P  with d  as the least integer such 

that the following two conditions are satisfied: 

=1( ) ,
d

i ii X H  

1 1

=1 =1
( ) | ( ) \ |=max{| ( \ ) | | isan

i i

i j jj j
ii H X H H X H H

 

  (n-1) }.plane  

Since 1n   points do not lie on a ( 2)n  -plane, 1 3.d   We consider the following cases:  

Case 1. = 3.d  Since a hyperplane always passes through at least n  points of X  and = 3,d  we 

have 1 2 3| |=| |= ,| |=1.H H n H  We may assume that 2 1 1 2.nP H H    Choose 2 1
0

= = (1,0,...,0),n iP P  

then 1
0
= ( ,..., ).i nx x

 
Clearly, 1 2,H H  avoid 

0
.iP  We have 1 1 2 2H H H H J  for every monomial 

1
1=
c c

n
nM x x  where 1 = ( =0,1).nc c i i   By [4, Lemma 3] we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

Case 2. = 2.d  We have 1 2.X H H   Therefore, 1| | 1.H n   We call q  the number points of X  

lying on 2.H  Put 1={ ,..., }.qY P P  Since 1n   points of X  do not lie on a ( 2)n  -plane, Y  does not 

lie on a ( 3)q  -plane. We consider the following cases: 

Case 2.1. Y  lies on a ( 1)q  -plane, and Y  does not lie on a ( 2)q  -plane.  

Choose 
0

= = (1,0,...,0),q iP P  1
2

= (0,1 ,...,0),...,P  1 = (0,...,1 ,...,0),q
q

P   then 1 2
0
= ( ,..., ).i x x  Since we always 

have a ( 2)q  -plane, say ,K  passing through 1 1,..., qP P   and avoiding 
0
;iP  therefore, we always 

have a hyperplane, say ,L  containing K  and avoiding 
0
.iP  We have 1 1 .H H LL J  Thus 

1 1H H LLM J  for every monomial 1
1 1= , = ( =0,1).
c c

n
n nM x x c c i i   By [4, Lemma 3] we have  
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2

0
( / ( )) 4 5 .i Zreg R J i T      

Case 2.2. Y  lies on a ( 2)q  -plane , 3,q   then 1H  contains 2 1n q   points of .X  Consider the 

set 1 2 1 1={ ,..., } ,q nW P P H X     then there are ( 2)n  -planes 1,..., dQ Q  in n
P  such that the following 

two conditions are satisfied: 

=1( ) ,
d

i ii W Q  

1 1

=1 =1
( ) | \ |=max{| ( \ ) | | isan

i i

i j jj j
ii Q W Q Q W Q Q

 

  (n-2) }.plane   

Since 3,q   then we have 2 1 2 2.n q n     Moreover, every ( 2)n  -plane always passes through 

1n   points, so we have = 2.d  We consider the following cases: 

Case 2.2.1. If 1Q  contains n  points, then there are the points, that is, 
1
,...,iP  

1
i
n q

P
 

 of W  lying on 

2.Q  Choose 
1 0
= = (1,0,...,0),i iP P  then 1

0
= ( ,..., ).i nx x  There always exists a ( 2)n  -plane, say ,K  

containing 
2 1
,...,i i

n q
P P

 
 and Y  and avoiding 

0
iP  (if not, then there exists 1n   points lying on a 

( 2)n  -plane). Therefore, we can choose a hyperplane 1L  containing 1Q  and a hyperplane 2L  

containing K  avoiding 
0
.iP  

We have 1 1 2 2 ,L L L L J  thus 1 1 2 2L L L L M J  for every monomial 

1
1 1= , = ( =0,1).
c c

n
n nM x x c c i i   By [4, Lemma 3] we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

Case 2.2.2. If 1Q  contains 1n   points then we call 1 2 1={ ,..., } \ .nT P P X Q   We consider the two 

following cases of T : 

a) T  lies on a ( 1)n  -plane, say ,L  then 3 2 1,...,n nP P   lie on 1.Q  Since X  does not lie on a ( 1)n  -

plane, there exists a point in 1 \ .Q L  Assume that 2 1 .nP L   Moreover, since points on 1Q  are in 

the general position, there exists a ( 3)n  -plane passing through 2n   points of 1Q  and avoiding 

2 1.nP   We call   the ( 3)n  -plane passing through 2n   points 3 2,...,n nP P  of 1Q  and 2 1 ,nP    

choose 2 1
0

= = (1,0,...,0),n iP P  then 1
0
= ( ,..., ).i nx x  We always have a hyperplane 1L  containing   

and avoiding 
0
.iP  We have 1 1 ,LLL L J  thus 1 1LLL L M J  for every monomial 

1
1 1= , = ( =0,1).
c c

n
n nM x x c c i i   By [4, Lemma 3] we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

b) T  does not lie on a ( 1)n  -plane, thus T  lies on .
n

P  We have the two following cases: 

  If T  has 1n   points lying on a ( 1)n  -plane, say ,L  then there exists a point in T  without in 

.L  Assume that 2 .nP L   Choose 2
0

= = (1,0,...,0),n iP P  then 1
0
= ( ,..., ).i nx x  We always have a 

hyperplane 1L  passing through 1Q  and avoiding 
0
.iP  We have 1 1 ,LLL L J  thus 1 1LLL L M J  for 

every monomial 1
1 1= , = ( =0,1).
c c

n
n nM x x c c i i   By [4, Lemma 3] we have  
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2

0
( / ( )) 4 5 .i Zreg R J i T      

  If T  does not have 1n   points lying on a ( 1)n  -plane, then T  is in the general position. 

Choose 2
0

1

= = (1 ,0,...,0),n iP P  1
2

=(0,1 ,...,0),P ..., 
1

=(0,0,...,0,1 ),n
n

P


 then 
1

0
= ( ,..., ).i nx x  For every 

monomial 1
1 1= , = ( =0,1),
c c

n
n nM x x c c i i   we have 1

1 1 .
i c i c

nM
 

    Put 

1=2 ( =1,...., ), =2l l nm i c l n m    and  

1

=1

=max{2,[( 1) / ]}.
n

l

l

t m n n


   

We have 

1

=1

=max{2,[( 1) / ]}
n

l

l

t i m n n i


     

1

=1

max{2 ,[( 1) / ]}
n

l

i

i m ni n n


      

max{2 ,[(3 2) / ] 3,i n n     

therefore,  

3 .t i   

By [4, Lemma 4], we can find t  ( 1)n  -planes, say 1,..., tL L , avoiding 
0
iP  such that for 

every point ( =1,..., 1),lP l n  there are lm  ( 1)n  -planes of 1{ ,..., }tL L  passing through .lP  Then  

21
1 1 1.

m m
n

t n nL L      

On the other hand, since 
2 2

1
1 ,

m m
n

nM
 

    we have 2 2

1 1 1.t nL L M     

Moreover, we always have an hyperplane L  containing 1Q  and avoiding 
0
.iP  We have 

2 2

3 2 1,n nLL      thus 1 .tLLL LM J  By [4, Lemma 3] we have  

2

0
( / ( )) (5 ) =5 .i Zreg R J i i T      

Case 3. =1.d  We have 1.X H  Then there are ( 2)n  -planes 1,..., sQ Q  in ,
n

P  with s  be the 

smallest number integer such that the following two conditions are satisfied: 

=1( ) ,
s

i ii X Q  

1 1

=1 =1
( ) | ( \ ) |=max{| ( \ ) | | isan

i i

i j jj j
ii Q X Q Q X Q Q

 

  (n-2) }.plane  

Since the ( 2)n  -planes contain the most n  points of X  and they always pass through 1n   

points, therefore = 3,s  we have the following cases: 

(1) 1 2 3| |=| |= ,| |=1.Q Q n Q  

(2) 1 2 1 3 1 2| |= ,| \ |= 1,| \ ( ) |=2.Q n Q Q n Q Q Q   
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(3) 1 2 3| |= 1,| |= 1,| |=3.Q n Q n Q   

Case 3.1. 1 2 3| |=| |= ,| |=1.Q Q n Q  

Assume that 1 3 ,P Q  therefore, 1 1 2.P Q Q   Choose 
1

0
= = (1,0,...,0),iP P  thus 

1
0
= ( ,..., ).i nx x  

We always have a hyperplane 1L  containing 1Q  and a hyperplane 2L  containing 2Q  and 

avoiding 
0
.iP  Therefore, 1 1 2 2L L L L M J  for every monomial 1

1 1= , = ( =0,1).
c c

n
n nM x x c c i i   By [4, 

Lemma 3] we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

Case 3.2. 1 2 1 3 1 2| |= ,| \ |= 1,| \ ( ) |=2.Q n Q Q n Q Q Q   

Assume that 1Q  contains 2 2 1,..., .n nP P   Put 1 1={ ,..., },nY P P   therefore, there is a set of points 

of Y  lying on a ( 1)n  -plane such that there do not exist n  points of Y  lying on a ( 2)n  -plane. 

Choose 1
0

= = (1,0,...,0),n iP P  1
2

=(0,1 ,...,0),P ..., 1 = (0,...,0,1 ,...,0),n
n

P   thus 1
0
= ( ,..., ).i nx x  For every 

monomial 1
1= ,
c c

n
nM x x  1 = ( =0,1),nc c i i   we have 1 1

1 1 .
i c i c

n
nM

 


    Put 

=2 ( =1,..., 1), =2l l nm i c l n m    and  

=1

=max{2,[( 2) / ( 1)]}.
n

l

i

t m n n    

We have  

=1

=max{2,[( 2) / ( 1)]}
n

l

i

t i m n n i      

=1

max{2 ,[( ( 1) 2) / ( 1)]}
n

l

i

i m n i n n        

=1

max{2 ,[(3 4) / ( 1)]}
n

j

j

i n c n      

max{2 ,[3 3 / ( 1)]} 3.i n n      

Thus,  

3 .t i   

By [4, Lemma 4] we can find t  ( 2)n  -planes, say 1,..., tG G
 avoiding 

0
iP  such that for every 

point ( =1,..., 1)lP l n   there are lm  ( 2)n  -planes of 1{ ,..., }tG G  passing through .lP  With =1,...,j t  

we find a hyperplane jL  containing jG  and avoiding .
0
iP  Therefore  

21 1
1 1 1 .

m m
n

t n nL L 
     
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On the other hand, since 
2 2

1 1
1 1 ,

m m
n

nM
 


    we have 2 2 2

1 1 1 .t n nL LM      

Moreover, we may choose a hyperplane L  containing 1Q  and avoiding 
0
,iP  thus 1 tLLL LM J  

for every 1
1= ,
c c

n
nM x x  1 = ( =0,1).nc c i i   By [4, Lemma 3], we have  

2

0
( ) (5 ) 5 .i Zreg J i i T       

Case 3.3. 1 2 3| |= 1,| |= 1,| |=3.Q n Q n Q   Then, there are not n  points of X  lying on a ( 2)n  -

plane. Therefore, we consider a set of points of X  lying on 1
,

n
P

  thus X  is in the general 

position. Choose 
2 1

0
= = (1,0,...,0),n iP P  1 1

2

=(0,1 ,...,0),..., = (0,...,1 ,0),n
n

P P   then 
1

0
= ( ,..., ).i nx x  For 

every monomial 1
1= ,
c c

n
nM x x  1 = ( =0,1),nc c i i   we have 1 1

1 1 .
i c i c

n
nM

 


    Put 

=2 ,( =1,..., 1),l lm i c l n    =2,( = ,...,2 )lm l n n  and  

2

=1

=max{2,[( 2) / ( 1)]}.
n

l

i

t m n n    

We have  

2

=1

=max{2,[( 2) / ( 1)]}
n

l

i

t i m n n i      

2

=1

max{2 ,[( ( 1) 2) / ( 1)]}
n

l

i

i m n i n n        

1

=1

max{2 ,[(4 2) / ( 1)]}
n

j

j

i n c n n


        

1 1max{2 ,[2(2 1) ( 1) 2) / ( 1)]}=max{ , } .n Zi n n n T T T         

By [4, Lemma 4] we can find t  ( 2)n  -planes, say 1,..., ,tG G  avoiding 
0
iP  such that for 

every point ( =1,..., 1),lP l n  then there exist lm  ( 2)n  -planes of 1{ ,..., }tG G  passing through ,lP  

with =1,..., ,j t  we always have a hyperplane jL  containing jG  and avoiding 
0
.iP  Therefore,  

2 21 1
1 1 1 2 .

m m
n

t n n nL L 
       

On the other hand, since 
2 2

1 1
1 1 ,

m m
n

nM
 


    then 2 2

1 1 2 .t nL L M    By [4, Lemma 

3] we have  

2

0
( ) .i Zreg J t i T     

The proof of proposition 2.1 is completed.             

Proposition 2.2. Let 1 2 1={ ,..., }nX P P   be a set of 2 1n   distinct points and there do not exist 1n   points 

of X  lying on an ( 2)n  -plane in .
n

P  Let 
1

={ ,..., },2 2 ,i i
s

Y P P s n   be a subset of .X  Let i  be the 

homogeneous prime ideal corresponding , =1,...,2 1.iP i n   Let  

1 2 1=2 2 .nZ P P    
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Put  

1

1
=max{[ (2 2)] | ,..., lieonanj plane},j i i

q
T q j P P

j
    

=max{ | =1,..., }.Z jT T j n  

Then, there exists a point 
0
iP Y  such that  

2

0
( / ( )) ,i Zreg R J T   

where  

2

\{ }
0

= .k
P Y P
k i

J


  

Proof: We denote | |H  by the number points of X  lying on a j -plane .H  The proposition was 

proved in projective spaces with dimension 4n   [5], [7], [8], [9]. Thus, we will prove the case 

with dimension 5.n   Firstly, we can see that 5.ZT   Without loss of generality, assume that 

1={ ,..., }.sY P P  We consider the following cases: 

Case 1. 2 1.s n    Since there are not 1n   points lying on an ( 2)n  -plane, then we have the 

two following cases of :Y  

Case 1.1. Y  does not lie on a ( 2)s  -plane. Therefore, there exists a ( 2)s  -plane, say ,  passing 

through 1s   points 1 1,..., sP P   and avoiding .sP  Choose 
0

= = (1,0,...,0);s iP P  therefore, 

1
0
= ( ,..., ).i nx x  We always have a hyperplane L  containing   and avoiding 

0
.iP  We have ;LL J  

therefore, LLM J  for every monomial 1
1= ,
c c

n
nM x x  1 = ( =0,1).nc c i i   By [4, Lemma 3] we 

have  

2

0
( / ( )) 2 5 .i Zreg R J i T      

Case 1.2. Y  lies on a ( 2)s  -plane. Then, there exists a ( 3)s  -plane, say ,  passing through l  

points of , 2 1.Y s l s     We consider the following two cases: 

  = 1.l s   Assume that 1 1,..., .sP P    Choose 
0

= = (1,0,...,0),s iP P  then we have 1
0
= ( ,..., ).i nx x  We 

always have a hyperplane L  containing   and avoiding 
0
.iP  We have ;LL J  therefore, 

LLM J  for every monomial 1
1= ,
c c

n
nM x x  1 = ( =0,1).nc c i i   By [4, Lemma 3] we have  

2

0
( / ( )) 2 5 .i Zreg R J i T      

  = 2.l s   Assume that 1 2,..., .sP P    Choose 
0

= = (1,0,...,0),s iP P  then we have 1
0
= ( ,..., ).i nx x  We 

always have a hyperplane 1L  containing ;  2L  passing through 1sP   and avoiding 
0
.iP  We have 

1 1 2 2 ;L L L L J  therefore, 1 1 2 2L L L L M J  for every monomial 1
1= ,
c c

n
nM x x  1 = ( =0,1).nc c i i   By [4, 

Lemma 3] we have  
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2

0
( / ( )) 4 5 .i Zreg R J i T      

Case 2. 2 2 .n s n    Assume that 1={ ,..., }sY P P  is a set of s  double points on .
n

P  Then there are 

( 1)n  -planes 1,..., dH H  in n
P  with d  as the least integer such that the following two conditions 

are satisfied: 

=1( ) ,
d

i ii Y H  

1 1

=1 =1
( ) | ( \ ) |=max{| ( \ ) | | isa

i i

i j jj j
ii H Y H H Y H H

 

  (n-1) }.plane  

Since every hyperplane always passes through at least n  points of ,X  we have 1 2.d   We 

consider the following cases of d :  

Case 2.1. = 2.d  We have 1 2 1 2 1, | | | |, | | .Y H H H H H n     We call q  the number points of Y  

lying on 2,1 .H q n  Without loss of generality, assume that 1,..., qP P  lying on 2.H  Put 

1={ ,..., }.qV P P  Since there are not 1n   points of X  lying on a ( 2)n  -plane, we see that V  does 

not lie on a ( 3)q  -plane. We consider the following cases: 

Case 2.1.1. V  lies on a ( 1)q  -plane and does not lie on a ( 2)q  -plane. Choose 
0

= = (1,0,...,0),q iP P  

1
2

= (0,1 ,...,0),...,P  1 = (0,...,1 ,...,0),q
q

P   then we have 1
0
= ( ,..., ).i nx x  There always exists a ( 2)q  -

plane, say ,K  passing through 1 1,..., qP P   and avoiding 
0
,iP  therefore we always have a 

hyperplane L  containing K  and avoiding 
0
.iP  We have 1 1 ;H H LL J  therefore, 1 1H H LLM J  for 

every monomial 1
1= ,
c c

n
nM x x  1 = ( =0,1).nc c i i   By [4, Lemma 3] we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

Case 2.1.2. V  lies on a ( 2)q  -plane ,  we have 3 1.q n    Then 1| |H  contains s q  points of 

.Y  Assume that 1 1={ ,..., } .q sW P P Y H    Then, there are two ( 2)n  -planes 1 2,Q Q  such that the 

following two conditions are satisfied: 

1 2( ) ,i W Q Q   

1 1

=1 =1
( ) | \ |=max{| ( \ ) | | isa

i i

i j jj j
ii Q W Q Q W Q Q

 

  (n-2) }.plane  

We consider the following two cases of 1 :Q  

Case 2.1.2.1. 1Q  contains n  points. Then, 1 1;H n   so, 1.s n q    From the conditions of ( )i  

and ( ),ii  there are s n q   points of Y  lying on 2,Q  assume that 2
1
,..., .i s n qP P Q    Choose 

1 0
= = (1,0,...,0),i iP P  then we have 1

0
= ( ,..., ).i nx x  Since 3 3,s n n     there is a ( 3)s n  -plane, 

say ,K  containing V  and 
2
,...,i s n qP P    and avoiding 

0
iP  (if not, then there are 1n   points of X  

lying on a ( 2)n  -plane). Therefore, we always have an hyperplane 1L  containing 1,Q  and a 

hyperplane 2L  containing K  and avoiding 
0
.iP  We have 1 1 2 2 ;L L L L J  therefore, 1 1 2 2L L L L M J  for 

every monomial 1
1= ,
c c

n
nM x x  1 = ( =0,1).nc c i i   By [4, Lemma 3] we have  
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2

0
( / ( )) 4 5 .i Zreg R J i T      

Case 2.1.2.2. 1Q  contains 1n   points. Assume that 1 1={ ,..., }s nT P P    is a subset of 1s n   points 

of Y  which does not lie on 1.Q  Since ,Y T    a set of points of T  lie on an ( 1)s n  -plane. 

We have 1 1.s n n     We call   a ( 1)s n  -plane containing .T  Since a set of points of Y  

does not lie on a ( 1)n  -plane, there exists a point in 1 \ ,Q   we may assume that it is .sP  Choose 

0
= = (1,0,...,0),s iP P  then we have 1

0
= ( ,..., ).i nx x  We consider on a ( 2)n  -plane 1Q . Since there 

exists a ( 3)n  -plane, say ,  passing through 2n   points of 1Y Q  and avoiding 
0
,iP  we 

always have a hyperplane 1L  containing ,  and an hyperplane 2L  containing   and avoiding 

0
iP . We have 1 1 2 2 ;L L L L J  therefore, 1 1 2 2L L L L M J  for every monomial 1

1= ,
c c

n
nM x x  

1 = ( =0,1).nc c i i   By [4, Lemma 3] we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

Case 2.2. =1.d  We have 1.Y H  Then, there are ( 2)n  -planes 1,..., rQ Q  in n
P  such that the 

following two conditions are satisfied: 

=1( ) ,
r

i ii Y Q   

1 1

=1 =1
( ) | ( \ ) |=max{| ( \ ) | | isan

i i

i j jj j
ii Q Y Q Q Y Q Q

 

  (n-2) }.plane  

Since ( 2)n  -planes contain the most n  points of Y  and they always pass through 1n   points, 

we have 2 3.r   We consider the following cases of .r  

Case 2.2.1. = 3.r  Then 2 2 1.n s n    Since every ( =1,2)iQ i  contains the most 1n   points, we 

have 1 2| | 2.Q Q n    So 3 1 21 | \ ( ) | 2.Q Q Q    We consider the following cases of 3| | .Q  

a) 3 1 2| \ ( ) |=1.Q Q Q  Assume that 3 1 2, .sP Q P Q Q    Choose 
0

= = (1,0,...,0)s iP P  then 1
0
= ( ,..., ).i nx x  

We always have a hyperplane 1L  containing 1,Q  and an hyperplane 2L  containing 2Q  and 

avoiding 
0
.iP  We have 1 1 2 2 ;L L L L J  therefore, 1 1 2 2L L L L M J  for every monomial 1

1= ,
c c

n
nM x x  

1 = ( =0,1).nc c i i   By [4, Lemma 3] we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

b) 3 1 2| \ ( ) |=2.Q Q Q  Then 1 2=2 ,| |=| |= 1.s n Q Q n  Thus there are not any n  points of Y  lying on 

an ( 2)n  -plane. Choose 2
0

1

= =(1 ,0,...,0),n iP P  1 1
2

=(0,1 ,...,0),..., = (0,...,1 ,0),n
n

P P   then we have 

1
0
= ( ,..., ).i nx x  For every monomial 1

1= ,
c c

n
nM x x  1 = ( =0,1),nc c i i   we have 

1 1
1 1 .
i c i c

n
nM

 


    Put =2 ( =1,..., 1),l lm i c l n    =2( = ,...,2 1)lm l n n   and  

2 1

=1

=max{2,[( 2) / ( 1)]}
n

l

i

t m n n


    

We have  
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2 1

=1

=max{2,[( 2) / ( 1)]}
n

l

i

t i m n n i


      

2 1

=1

max{2 ,[( ( 1) 2) / ( 1)]}
n

l

i

i m n i n n


        

1

=1

max{2 ,[(4 4) / ( 1)]}
n

j

j

i n c n n


        

1 1max{2 ,[2(2 1) ( 1) 2) / ( 1)]}=max{ , } .n Zi n n n T T T         

By [4, Lemma 4], we can find t  ( 2)n  -plane, say 1,..., tG G  avoiding 
0
iP  such that for every 

point ( =1,..., ),lP l n  there exists an lm  ( 2)n  -plane of 
1{ ,..., }tG G  passing through .lP  With 

=1,..., ,j t  we always have an hyperplane jL  containing jG  and avoiding 
0
.iP  Then  

2 21 1
1 1 1 2 .

m m
n

t n n nL L 
       

On the other hand, since 2 2
1 1

1 1 ,
m m

n
nM

 


    then we have 
1 tL LM  2 2

1 2 .n    By 

[4, Lemma 3], we have  

2

0
( ) .i Zreg J t i T     

Case 2.2.2. = 2.r  We have 
1 2.Y Q Q   We consider the following subcases of 

1Q : 

Subcase 2.2.2.1. 
1| |= 1.Q n   Assume that 

1 1,..., nP P 
 are 1n   points of Y  lying on 

1.Q  Since Y  

does not lie on a ( 2)n  -plane, there exists a point in 
1 2\ ,Q Q  assume that 

1 1 2\ .P Q Q  Moreover, 

since points on 
1Q  are in the general position, there exists a ( 3)n  -plane, say ,  passing 

through 2n   points 
2 1,..., nP P   and avoiding 

1.P  Choose 1
0

= = (1,0,...,0),iP P  then we have 

1
0
= ( ,..., ).i nx x  We always have an hyperplane 

1L  containing ,  and an hyperplane 
2L  

containing 
2Q  and avoiding 

0
.iP  We have 

1 1 2 2 ;L L L L J  therefore, 
1 1 2 2L L L L M J  for every 

monomial 1
1= ,
c c

n
nM x x  

1 = ( =0,1).nc c i i   By [4, Lemma 3], we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

Subcase 2.2.2.2. 
1| |= .Q n  Assume that 

1 1,..., nP P Q Y   and 
1 1,..., \ .n sP P Y Q   Put 

1={ ,..., }.n sU P P
 

Since 2 2 ,n s n    then 2 .s n n    We consider the two following cases: 

a) U  lies on a ( 1)s n  -plane. Then a set of points of U  is in the general position, there exists a 

( 2)s n  -plane, say 
1,  passing through 1s n   points 

1 1,...,n sP P   and avoding .sP  Choose 

0
= = (1,0,...,0),s iP P  then we have 1

0
= ( ,..., ).i nx x  We always have a hyperplane 

1L  containing 
1,  

and an hyperplane 
2L  containing 

1Q  and avoiding 
0
.iP  We have 

1 1 2 2 ;L L L L J  therefore, 

1 1 2 2L L L L M J  for every monomial 1
1= ,
c c

n
nM x x  

1 = ( =0,1).nc c i i   By [4, Lemma 3], we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      
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b) U  lies on a ( 2)s n  -plane, say 
2.  Then 3 s n   and 

2 1 =Q Y     (if not, then there are 

1n   points of X  lying on an ( 2)n  -plane). We consider the following cases: 

  If there are 1n   points of 
1Y Q  lying on a ( 3)n  -plane, say ,  then there exists a point, 

assume that 
1 1 \ .P Q   Choose 1

0
= = (1,0,...,0),iP P  then we have 1

0
= ( ,..., ).i nx x  We always have a 

hyperplane 
1L  containing ,  and an hyperplane 

2L  containing 
2  and avoiding 

0
.iP  We have 

1 1 2 2 ,L L L L J  therefore, 
1 1 2 2L L L L M J  for every monomial 1

1= ,
c c

n
nM x x  

1 = ( =0,1).nc c i i   By [4, 

Lemma 3] we have  

2

0
( / ( )) 4 5 .i Zreg R J i T      

  If there are not any 1n   points of 
1Y Q  lying on a ( 3)n  -plane, then every ( 3)n  -plane 

only passes through 2n   points of 
1.Y Q  Choose 

0
1

= = (1 ,0,...,0),n iP P  

1 2
2 1

=(0,1 ,...,0),..., = (0,...,0,1 ,0,0),n
n

P P 


 then we have 1
0
= ( ,..., ).i nx x  For every monomial 

1
1= ,
c c

n
nM x x  

1 = ( =0,1),nc c i i   we have 1 2
1 2 .
i c i c

n
nM

 


    Put =2 ( =1,..., 2),l lm i c l n    

1 =2nm 
 and  

1

=1

=max{2,[( 3) / ( 2)]}.
n

l

i

t m n n


    

we have 
1

=1

=max{2,[( 3) / ( 2)]}
n

l

i

t i m n n i


      

1

=1

max{2 ,[( ( 2) 3) / ( 2)]}
n

l

i

i m n i n n


        

1

=1

max{2 ,[(3 5) / ( 2)]}
n

j

j

i n c n


       

max{2 ,[3 4 / ( 2)]}= 3.i n n     

Therefore  

3 .t i   

By [4, Lemma 4], we can find t  ( 3)n  -planes, say 
1,..., ,tG G  avoiding 

0
iP  such that for 

every point ( =1,..., ),lP l n  there exist 
lm  ( 3)n  -planes of 

1{ ,..., }tG G  passing through .lP  With 

=1,..., ,j t  we always have a hyperplane jL  containing jG  and avoiding 
0
.iP  Then,  

21 2
1 1 2 1.

m m
n

t n nL L 
      

On the other hand, since 2 2
1 2

1 2 ,
m m

n
nM

 


    we have 
1 tL LM  2 2

1 1n    for 

every monomial 1
1= ,
c c

n
nM x x  

1 = ( =0,1).nc c i i   Moreover, we always have an hyperplane L  

containing 
2  and avoiding 

0
.iP  We have 2 2

1 ,n sLL     therefore 

2 2 2 2

1 1 1 1 = .t n n sLLL LM J        By [4, Lemma 3], we have  
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2

0
( ) (5 ) =5 .i Zreg J i i T      

The proof of Proposition 2.2 is completed.            

The following theorem is the main result of this article. 

Theorem 2.3. Let 
1 2 1={ ,..., }nX P P 

 be a set of 2 1n   distinct points in n
P  such that there are not 1n   

points of X  lying on an ( 2)n  -plane. Let  

1 2 1=2 2 .nZ P P    

Then  

( ) max{ | =1,..., }= ,j Zreg Z T j n T  

where  

1

2 2
={[ ] | ,..., lieonanj plane}.j i i

q

q j
T P P

j

 
  

Proof: Firstly, we have the following claim: 

Let 
1 2 1={ ,..., }nX P P 

 in ,
n

P  
1

={ ,..., }i i
s

Y P P  be a subset of ,1 2 .X s n   Then  

 ( / ) ,s Zreg R J T  

where  

2
= .s i

P Y
i

J


  

We will prove this claim by induction on  the number points of .Y  

If =1.s  Let 
1  be the defining homogeneous prime ideal of 

1.P  Put 2

1 1 1= , = / .J A R J  Then,  

1( / )=1 .Zreg R J T  

Assume that the claim is right for all subsets Y  of X  whose number points are smaller or 

equal  to 1.s   Let 
1

={ ,..., }.i i
s

Y P P  By Proposition 2.2, there exists a point 
0
iP Y  such that  

2

1
0

( / ( )) , (1)s i Zreg R J T    

where 2

1

\{ }
0

= .s i

P Y P
i i

J 



  Note that, 
1sJ   is the intersection of ideals containing 1s   double points 

of .Y  By conjecture of induction, we have  

1( / ) . (2)s Zreg R J T   

By [4, Lemma 1], we have  

2

1 1
0

( / )={1, ( / ( ), ( / ( ))}. (3)s s s ireg R J reg R J reg R J    

From (1), (2) and (3) we have  

( / ) .s Zreg R J T  
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The proof of the above claim is completed. 

Now, we prove Theorem 2.3. Let 
1 2 1={ ,..., }nX P P 

 in .
n

P  By Proposition 2.1, there exists a 

point 
0
iP X  such that  

2

0
( / ( )) . (4)i Zreg R J T   

where 2

\{ }
0

= .i
P X P
i i

J


  Note that, J  is the intersection of ideals containing 2n  double points of .X  

Therefore, by the above claim with = 2 ,s n  we have : 

( / ) . (5)Zreg R J T  

By [4, Lemma 1], we have  

2

0
/ ={1, ( / ), ( / ( ))} (6)iregR I reg R J reg R J   

where 2

0
= .iI J  

From (4), (5) and (6) we have  

( ) .Zreg Z T  

The proof of Theorem 2.3 is completed.              

References 

1. Hirschowits A. (1992), La mesthode d’Horace esclatée: application à I’interpolation en degré quatre, 

Invent. Math., 107, 585 – 602. 

2. BallicoE., Dumitrescu O, and Postinghel E. (2016), On Segre’s bound for fat points in ,
n

P  J. Pure and 

Appl. Algebra, 220, Issue 6, 2307–2323. 

3. Catalisano M.V. (1991), Fat points on a conic, Comm. Algebra 19, 2153 – 2168. 

4. Catalisano M.V., N.V. Trung and Valla G. (1993), A sharp bound for the regularity index of fat points 

in general position, Proc. Amer. Math. Soc., 118, 717–724. 

5. Davis E.D. and Geramita A.V. (1984), The Hilbert funtion of a special class of 1-dimension Cohen - 

Macaulay grade algrebras, The Curves Seminar at Queen’s, Queen’s Paper in Pure and Appl. Math., 67, 

1–29. 

6. Serge B. (1961), Alcune question su insiemi finiti di punti in geometria algebrica, Atti. Convergno. 

Intern. di Torino, 15–33. 

7. P.V. Thien (1999), On Serge bound for the regularity index of fat points in 2
P , Acta Math. Vietnamica, 

24, 75–81. 

8. P.V. Thien (2000), Serge bound for the regularity index of fat points in 3
,P  J. Pure and Appl. Algebra, 

151, 197 – 214. 

9. P.V. Thien (2002), Sharp upper bound for the regularity of zero-schemes of double points in 4
P , 

Comm. Algebra, 30, 5825–5847. 

10. P.V. Thien (2012), Regularity index of s+2 fat points not on a (s-1)-space, Comm. Algebra, 40, 3704–3715. 


