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Abstract: In this paper, we provide a comprehensive study of the thermodynamic quantities of the ideal 

Fermi gas confined in a three-dimensional harmonic trap by using the properties of the Fermi-Dirac 

integral function both analytically and numerically. The analytical formulae describing the dependences of 

the chemical potential, total energy and heat capacity on the temperature are obtained via the appropriate 

approximations. Afterwards, the results are compared with the well-converged numerical calculations in 

order to evaluate the applicability of these formulae. 
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1 Introduction 

In 1924–1925, Bose and Einstein theoretically predicted that non-interacting particles should 

experience a phase transition in a low-temperature regime. Only particles with an integer spin 

called bosons undergo this phase transition due to the fact that the same states can be occupied 

by many bosons. On the contrary, fermions following the Fermi-Dirac statistics with a half-

integer spin obey the Pauli exclusion principle such that two or more identical fermions are not 

able to be in the same energy state. Thus, they are forbidden from condensing into Bose-

Einstein condensate (BEC), and they can form a “Fermi sea”, instead. This statistical effect plays 

a key role in the studies of solid-state physics, neutral stars and so forth, thus a lot of theoretical 

and experimental studies have been carried out. At the beginning of the new millennium, many 

articles regarding the observation of the quantum degenerate atomic Fermi gas have been 

published and attracted much attention because of their great promise for numerous 

applications. In 1999, DeMarco and Jin successfully trapped 5
7 10 of 40

K to 0.5 FT  which was 

the onset of observing Fermi degeneracy [4] (here, FT  is the Fermi temperature). Three years 

later, the observation of strongly-interacting fermionic 6Li  [9] was made. In this decade, the 

thermodynamic properties of such interacting Fermionic gases were still a hot topic [6, 8, 10].  

In statistical physics, thermodynamic properties of the ideal Fermi gas in a free external 

potential are well-known and considered as textbook problems. However, those properties of 
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the ideal Fermi gas settled in a three-dimensional harmonic trap are vague. Here, the equation 

calculating the total number of particles    
0

, ,N f T g d   



  plays a significant role, in 

which ( , , )f T   and ( )g   are the distribution function and the density of states, respectively. 

To deal with this integral, the mathematical properties of the Fermi function are used, then 

many thermodynamic quantities are able to be obtained such as chemical potential, total 

energy, heat capacity, entropy, and so forth. In the field of ultracold atomic systems, generally, 

the gases are captured by an optical parabolic trap which is called a far-off-resonant optical 

trap, thus the thermodynamics of such systems is important basic issues. In 1997, Butts and 

Rokhsar published their work [2] on the properties of the spin-polarized Fermi gas in a 

harmonic trap. They provided the formulae calculating the chemical potential without 

mentioning their accuracy. They also included the formulae of heat capacity at low 

temperatures and classical limits. One year later, Mingzhe Li and colleagues generally 

calculated these thermodynamic variables in an external potential with tU br [7]. However, 

there were no rigorous evaluation of the errors and discussion about the applicability of the 

formulae. Therefore, a comprehensive study of important thermodynamic quantities of the 

ideal Fermi gas is deserved. In this work, we provide not only an analytical derivation on these 

formulae associating with each thermodynamic quantity for two regimes of low and high 

temperatures but also their precise calculation in order to classify and estimate the applicability 

of those analytical formulae within each temperature regime.  

This article is organized as follows: in section 2, we introduce a thorough procedure to 

obtain the approximated formulae to calculate the chemical potential, total energy and heat 

capacity of the Fermi gas in a harmonic trap, sequentially. The numerical results are provided 

and discussed; these results also give the evaluation of the accuracy as well as show the 

applicability of the formulae, then. Section 3 concludes the topic.  

2 Thermodynamic functions 

2.1 Chemical potential 

We proceed to derive the most important thermodynamic quantities of the ideal Fermi gas 

confined in a three-dimensional harmonic trap. The chemical potential is the change in the 

internal energy when adding one extra particle to a system while keeping the volume and 

entropy unchanged [3]. The execution of the chemical potential as a function of temperature, to 

some extent, is helpful when calculating other thermodynamic quantities. The chemical 

potential is acquired by solving equation 

    
0

, ,N f T g d   



  , (1) 
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where 
exp[

1
( ,

(
, )

) 1]
f T

 









 and 

2

3
( )

2( )
g





  are the Fermi-Dirac distribution and the 

density of the state functions, respectively, with Bk , T,   and   being the Boltzmann constant, 

absolute temperature, energy and chemical potential, respectively, and  1/ BTk  . We note 

that the rigorous derivation of the density of the state function ( )g   for a harmonic oscillator is 

deferred to the appendix. 

At the absolute temperature, all the available single-particle states below Fermi energy 

( 0)F T  are occupied, while above this critical energy they are unoccupied. Taking into 

account that the Fermi-Dirac distribution is a step function whose value is equal to unity for 

energy below F  and is zero elsewhere, the Fermi energy can be deduced from equation (1) as 

 3 6F N   . (2) 

At low temperatures ( FT T ), due to the fact that the fugacity  expz   is extremely 

large, the chemical potential of the nearly degenerated Fermi gas can only be obtained using the 

Sommerfeld expansion 

  
2

2 4

0 0

( ) ( , , ) g( ) ( )g( ) ( ) ]
6

' [( )

F

F
F F B Bf T d d T kg gk O T

 


        




      . (3) 

Taking into account that the density of state ( )g   is a quadratic function, the terms higher 

than the second one can be eliminated. The formula describing the chemical potential as a 

function of reduced temperature / FT T   at low-temperature approximation (LTA) is obtained 

in terms of Fermi energy B Fk T  can be straightforwardly deduced 

 
2

2
1

3B Fk T

 
   . (4) 

We proceed to derive the chemical potential for high-temperature approximation (HTA) 

where  expz   is sufficiently small so that a power series [1] can be introduced to the 

Fermi-Dirac integral in equation (1) as 

 
1

1
10

1 ( )
[ ]

[ ] 1

k

v
k

z
f z dx

z e k



 





 





  
 

 ,  (5) 

where [ ] is the Gamma function. Substituting equation (5) into equation (1) with 3   one 

obtains  

 3
3

1
[ ] [3]

3
f z    . (6) 

Due to the complexity of solving the cubic or high-order equation, the Fermi-Dirac 

integral function 3[ ]f z  is expanded up to the second order then substituted to equation (6) to 

obtain 
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2

3 31
( )

6 8

z
z O z     . (7) 

Then, HTA of the chemical potential of the ideal Fermi gas in terms of Fermi energy B Fk T  

is obviously derived 

 
3 6

ln
6 288B Fk T

  


  
   

 

.  (8) 

Besides, we also provide the precise data by numerically solving equation (1) with the 

frequency of the trap ( 200  rad/s) and the total number of particles ( 510N  ), then compare 

the results with those obtained using the analytical formulae in order to estimate the 

applicability of the approximately analytical work. For the sake of intuitive evaluation, the 

matching between the numerical and analytical results was performed. Throughout this paper, 

we present the relative error as 

 
num approx

num

a a

a



 ,  (9) 

where numa , approxa are the well-converged numerical and approximated analytical values, 

respectively. We note that the accuracy of the numerical solution is not verified below 0.02TF 

due to the computational limitation, thus causing the divergence of the relative errors. 

 

    

Fig. 1. Chemical potential of the Fermi gas in the harmonic trap as a function of reduced temperature   

(left panel) and the relative error between results obtained from precise and approximation approaches 

(right panel). The solid black, dashed red and dotted blue curves represent results received from the 

numerical calculation, LTA (equation 4), and HTA (equation 8), respectively. 

We now present the chemical potential of the Fermi gas in the harmonic trap obtained by 

numerical calculation (solid black curve), LTA (dashed red curve), and HTA (dotted blue 

curve) in the left panel of Figure 1 for a wide range of temperatures to estimate the applicability 

of each approximation limit. The relative error between numerical and analytical results are 

also shown in the right panel of Figure 1 to intuitively classify the applicable range of each 

approximation limit. The results indicate that below 0.4 FT T , the LTA is well consistent with 
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the numerical calculation with the relative error of less than 0.06. For the wide range of 

temperature from 0.4 to 2.5
FT , the HTA is identical to the numerical result with the relative 

error being always of less than 0.06 and even approximately equal to 0 for 0.8  . There is also 

an overlap between two approximation formulae in 0.2 0.3   which implies the boundary 

between nearly degenerated and normal regions. We note that the shape of the curve 

corresponding to the numerical calculation (solid red) is universal regardless of the total 

number of particles used in our numerical calculations since the considered chemical potential 

is dimensionless and independent of the total number of particles of the system. 

2.2 Total energy 

In this subsection, a pair of formulae is provided to demonstrate the total energy of the system 

for both LTA and HTA by using the same treatment as in subsection 2.1. The average energy of 

a single particle is defined as 

 0 0

0

( ) ( , , ) ( ) ( , , )

( ) ( , , )

g f T g f T

N
g f T

 





 


 

 



 . (10) 

Then the total energy of this system can be sought as 

 
3

3

0

1

exp[ ( )] 12( )
E N d




  



 
  . (11) 

Again at low temperatures ( FT T ), due to the extremely large fugacity  expz  , 

the total energy in terms of B FNk T  can be derived using the Sommerfeld expansion and has the 

form of the quadratic polynomial 

 
2

23

4 2B F

E

Nk T


  .  (12) 

Then for the high-temperature limit, the Fermi-Dirac integral function and power series 

are still the key tools to derive the formula. Equation (10) can be rewritten in the form 

 4
43 [4] [ ]

B F

E
f z

Nk T
  . (13) 

By substituting the definition of 4[ ]f z  given by equation (4) into equation (13), the 

approximated total energy for HTA is then derived 

 
2

3
32B F

E

Nk T






  .  (14) 
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Note that in equation (14), the first term is identical to the classical limit derived in [8]. 

The second term in our treatment is the quantum correction for the total energy of the Fermi 

gas. For sufficiently high temperatures, our treatment and classical limit merge.  

The precise result is also sought by directly solving equation (11) numerically using the 

chemical potential obtained in the previous step as shown in subsection 2.1 and is shown in 

Figure 2 together with those analytically obtained from LTA (equation 12) and HTA (equation 

14). For 0 4.  , the LTA formula has the relative error of less than 0.08 with respect to the 

numerical result. While for 0 4~ . , the HTA result has the relative error of less than 0.08, which 

decreases continuously as the temperature increases. At the absolute zero temperature, the total 

energy of the completely degenerating system is non-zero (0.75 B FNk T ) due to the well-known 

Pauli exclusive principle, i.e., two fermions are not able to occupy an identical state. There is 

also a divergence as seen in Figure 1 for 0 2 0 3. .  , which supports the idea that this region is 

the boundary between nearly degenerate and ordinary states. As the temperature rises, the non-

degenerating Fermi gas approaches the classical limit and behaves like the classical gas as 

expected. 

 

     

Fig. 2. Total energy of Fermi gas in the harmonic trap as a function of temperature T(TF) (left panel) and 

the relative error between results obtained from precise and approximation approaches (right panel). Here 

the classical limit (dotted black curve) is also presented in the left panel. 

2.3 Heat capacity 

One more important thermodynamic quantity is the heat capacity defined as the sufficient 

energy required to increase the temperature of a system by one degree and is directly related to 

the total energy as 

 
E

C
T





.  (15) 

For LTA, the heat capacity can be derived by directly taking differential of the total 

energy in equation (12) and takes the form 

 2

B

C

Nk
   (16) 
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In case of HTA, since the power series has to be truncated in acquiring the total energy, 

the inaccuracy uncontrollably grows on the occasion that the total energy in equation (14) is 

directly differentiated. Thus, we have to consider the comprehensive form of total energy before 

treating to obtain the heat capacity. By combining equations (6) and (13), we have the total 

energy E defined in equation (11) in the form 

 4

3

[ ]
3

[ ]
B F

f z
E Nk T

f z
 , (17) 

Substituting equation (17) into equation (15) and taking into account the recursion 

relation 1

[ ] 1
[ ]

f z
f z

z z


 





, we acquire the relationship between heat capacity and Fermi-Dirac 

integral function 

 34 4

3 2 3

3 3
[ ][ ] [ ]

[ ] [ ] [ ]B

f zf z f zC

Nk f z f z f z

  
    

   

.  (18) 

Again, the power series equation (5) is used and truncated at the second order to derive 

the formula describing the heat capacity for HTA  

 
3

38

3
12

1

3 144

B

C

Nk








  



. (19) 

Formula (19) is well consistent with the classical limit for the first term [8], and the last 

two terms are the correction which widens the applicable region of HTA in our work. The 

results obtained from LTA and HTA are compared with those from the numerical calculation of 

equation (15) using the numerical total energy from the previous step as discussed in subsection 

2.2. The comparison is shown in Figure 3. Overall, the heat capacity of the Fermi gas in the 

harmonic trap is a linear function of reduced temperature in the nearly degenerate region, then 

it exponentially grows and approaches the classical limit [8] as the temperature increases. 

Obviously, in case of heat capacity, the relative error between the approximation and numerical 

calculation is well noticeable. LTA (equation 16) can be applied only for a narrow region of 

0.1 0.3   with the error value of around 0.2. However, as the temperature approaches zero, 

LTA totally diverges from the numerical calculation. While for sufficiently high temperatures, 

HTA can be applied for 0 5.   with the relative error of less than 0.2. The interesting feature 

observed from Figure 3 is that the heat capacity obtained from both LTA and HTA in the region 

0 3 0 5. .   is completely departed from that of the numerical calculation. There are two 

possible reasons for such divergence. The first one is the accumulation of inaccuracy while 

deriving heat capacity approximately. The second reason is due to the truncation up to second 

order of the power series in equation (5) throughout our treatment. However, the expansion to 

a higher order for the extension, the applicability of HTA is so tedious and deferred to our next 

project. 
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Fig. 3. Heat capacity of Fermi gas in the harmonic trap as a function of temperature T(TF) (left panel) and 

the relative error between results obtained from well-converged and approximation approaches (right 

panel). Here the classical limit (dotted black curve) is also presented in the left panel. 

3 Conclusion 

In this work, we successfully derived the formulae describing chemical potential and total 

energy of ideal Fermi gas trapped inside the three-dimensional harmonic trap for whole 

temperatures by using the Sommerfeld expansion and Fermi – Dirac integral function. In the 

low temperature and classical regime, these formulae completely agree with those proposed in 

[2]. Nevertheless, the applicability of these thermodynamic functions for each corresponding 

region is verified by comparing with the numerical results provided by rigorous and precise 

method. However, for heat capacity, there is still a wide temperature range that cannot be 

described either LTA or HTA. Thus, the expansion of the applicability of the approximation 

approach for heat capacity has to be included in our next work. 

Appendix: Calculating the density of state function of harmonic oscillator 

In the classical limit, the energy of a fermion in a three-dimensional harmonic trap is given as 

[5] 

 ( )x y zn n n    , (A1) 

where , , 0x y zn n n   are the quantum numbers corresponding to three dimensions x, y, and z, 

respectively, and the zero-point energy has been neglected. Equation (A1) is also the equation of 

a surface of a specific energy in a three-dimensional space consisting of three mutually 

orthogonal coordinates , ,x y zn n n  as shown in Figure 4.  
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Fig. 4. Surface presentation of the energy of a three-dimensional harmonic oscillator 

When the total number of states is sufficiently large, the total number of states 

corresponds to the volume of the tetrahedron is 

 
3

6

n
N  ,  (A2) 

in which n



  . Thus, it leads to 

 
2 2

32 2( )

n
dN dn d





  . (A3) 

The density of states describing the total number of quantum states within an interval of 

energy is now straightforwardly derived 

 
2

3)
( )

2(

dN
g

d







  . (A4) 
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