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Abstract. Based on the arithmetic of the endomorphisms ring End(ℤ𝑝 × ℤ𝑝𝑘), the paper 

constructs an exponent type encryption and decryption cryptosystem. Although involving 

more operations in the encryption and decryption phases than those of the original RSA 

one, the cryptosystem has some advantages in avoiding lattice and chosen plaintext attacks 

compared to the original RSA cryptosystem. 
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1 Introduction  

Constructed for the first time on the ring ℤ𝑛 by Rivest, Shamir and Adleman in 1978 [1], RSA is 

a famous cryptosystem and has been widely used in various applications. Together with 

cryptanalysing on RSA, constructing variants of the RSA cryptosystem on platforms other than 

ℤ𝑛 are the problems concerned by many authors. By convention, a cryptosystem is called an 

RSA variant if its encryption and decryption are an exponent type. The RSA variants on the 

quotient rings of Euclidean rings, such as the Gaussian integer ring or rings of polynomials 

having coefficients on finite fields [2], and the RSA variants on finite groups such as elliptic 

curve groups [3], or groups of non-singular matrices whose elements are on the finite fields [4], 

are examples of the RSA variants. 

A way of constructing a new platform is considering the ring 𝐸𝑛𝑑(𝐺), where 𝐺 is a given 

group. However, the arithmetic on that ring should be easy to handle so that we can perform 

operations on it. The ring 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝2) was first considered by Bergman [5] in 1974 and the 

isomorphism between this ring and the ring of 2 × 2 matrices was pointed out by Climent et.al 

[6] in 2011. With a similar method as in [6], Liu and Liu later established the isomorphism 

between the ring 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘) and a ring of 2 × 2 matrices whose elements in the first row 

and second row are in ℤ𝑝 and ℤ𝑝𝑚, respectively [7]. The arithmetic of the endomorphism ring 

𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘), therefore, is easy to handle. 

The aim of this paper is to construct an RSA cryptosystem on the subset 𝐸𝑛𝑑(ℤ𝑛 × ℤ𝑛𝑘), 

where 𝑛 is the product of two distinct primes 𝑝 and 𝑞. Section 2 presents some preliminaries of 
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the ring 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘) considered in [7], which are necessary for our work in the next section. 

In Section 3, our main results are constructing the platform for our RSA cryptosystem, 

establishing the equality 𝑀𝑒𝑑 = 𝑀  and finally proposing the cryptosystem together with an 

illustrated example. A comparison of some attacks to the original RSA cryptosystem will be 

mentioned in Section 4. This shows the disadvantages, as well as advantages, of our proposed 

cryptosystem. 

2 Arithmetic of the ring-endomorphism 𝑬𝒏𝒅(ℤ𝒏 × ℤ𝒏𝒌) 

This section recalls some properties of the ring 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘), which are considered in [7], 

where 𝑝 is a prime and 𝑘 is a whole positive number. We emphasize that 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘) is a 

noncommutative ring with the usual componentwise addition and composition of 

endomorphisms. 

Proposition 2.1 (Lemma 2.2 in [7]) Let  

𝐸𝑝,𝑝𝑘 = {(
𝑎 𝑏

𝑝𝑘−1𝑐 𝑑
) : 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 0 ≤ 𝑎, 𝑏, 𝑐 < 𝑝, 0 ≤ 𝑑 < 𝑝𝑘}. 

The set 𝐸𝑝,𝑝𝑘 is a ring where the addition is defined by  

(
𝑎1 𝑏1

𝑝𝑘−1𝑐1 𝑑1
) + (

𝑎2 𝑏2

𝑝𝑘−1𝑐2 𝑑2
) = (

(𝑎1 + 𝑎2) mod 𝑝 (𝑏1 + 𝑏2) mod 𝑝

𝑝𝑘−1(𝑐1 + 𝑐2) mod𝑝𝑘 (𝑑1 + 𝑑2)mod𝑝𝑘) 

and the multiplication is defined by 

(
𝑎1 𝑏1

𝑝𝑘−1𝑐1 𝑑1
) . (

𝑎2 𝑏2

𝑝𝑘−1𝑐2 𝑑2
) = (

(𝑎1. 𝑎2)mod 𝑝 (𝑎1𝑏2 + 𝑏1𝑑2)mod 𝑝

𝑝𝑘−1(𝑐1𝑎2 + 𝑐2𝑑1)mod𝑝𝑘 (𝑝𝑚−1𝑐1𝑏2 + 𝑑1𝑑2)mod𝑝𝑘). 

The isomorphism between 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘) and 𝐸𝑝,𝑝𝑘, then, pointed out by the following 

proposition. 

Proposition 2.2 (Theorem 2.3 in [7]) Define the map 𝜑 as follows 

𝜑: 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘) ⟶ 𝐸𝑝,𝑝𝑘 

𝛼 ⟼ 𝜑(𝛼) = (
𝑎 𝑏

𝑝𝑘−1𝑐 𝑑
) 

where 𝛼(1,0) = (𝑎, 𝑝𝑘−1𝑐), 𝛼(0,1) = (𝑏, 𝑑) and 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 0 ≤ 𝑎, 𝑏, 𝑐 < 𝑝, 0 ≤ 𝑑 < 𝑝𝑘 . Then, 𝜑 is a 

ring isomorphism from 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘) to 𝐸𝑝,𝑝𝑘. 
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Regarding the proposition above, the operations in 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘)  are now easy to 

handle. Before mentioning the invertible elements in 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝𝑘), note that the element 𝑑 ∈

ℤ, 0 ≤ 𝑑 < 𝑝𝑘 can be expressed in the form  

𝑑 = 𝑝𝑘−1𝑢𝑘−1 + 𝑝𝑘−2𝑢𝑘−2 + ⋯ + 𝑝𝑢1 + 𝑢0 

where 𝑢𝑚−1, 𝑢𝑚−2, … , 𝑢1, 𝑢0 ∈ ℤ, 0 ≤ 𝑢𝑘−1, 𝑢𝑘−2, … , 𝑢1, 𝑢0 < 𝑝. 

Proposition 2.3 (Theorem 3.6 in [7]) Suppose that 

𝑀 = (
𝑎 𝑏

𝑝𝑘−1𝑐 𝑑
) = (

𝑎 𝑏
𝑝𝑘−1𝑐 𝑝𝑘−1𝑢𝑘−1 + 𝑝𝑘−2𝑢𝑘−2 + ⋯ + 𝑝𝑢1 + 𝑢0

) ∈ 𝐸𝑝,𝑝𝑘 

where 𝑎, 𝑏, 𝑐, 𝑢𝑘−1, 𝑢𝑘−2, … , 𝑢1, 𝑢0 ∈ ℤ, 0 ≤ 𝑎, 𝑏, 𝑐, 𝑢𝑘−1, 𝑢𝑘−2, … , 𝑢1, 𝑢0 < 𝑝. Then, 𝑀 is invertible if and 

only if 𝑎 ≠ 0 and 𝑢0 ≠ 0. 

Since 𝐸𝑝,𝑝𝑚 is a ring, the set 𝐸𝑝,𝑝𝑚
∗  of all invertible elements in 𝐸𝑝,𝑝𝑘  is a multiplicative 

group. The order of that group can be computed as follows: 

Corrolary 2.1 (Corrolary 3.7 in [7]) The order of the group 𝐸
𝑝,𝑝𝑘
∗  is |𝐸

𝑝,𝑝𝑘
∗ | = (𝑝 − 1)2𝑝𝑘+1. 

3 The proposed cryptosystem 

3.1 Constructing the platform  

Suppose that 𝑝 and 𝑞 are two prime numbers, 𝑛 = 𝑝𝑞, and 𝑘 ≥ 2 is a whole number. We denote 

𝐸𝑛,𝑛𝑘 = {(
𝑎 𝑏

𝑛𝑘−1𝑐 𝑑
) : 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 0 ≤ 𝑎, 𝑏, 𝑐 < 𝑛, 0 ≤ 𝑑 < 𝑛𝑘}. 

For 𝑥 = (
𝑎1 𝑏1

𝑛𝑘−1𝑐1 𝑑1
) ∈ 𝐸𝑛,𝑛𝑘 and 𝑦 = (

𝑎2 𝑏2

𝑛𝑘−1𝑐2 𝑑2
) ∈ 𝐸𝑛,𝑛𝑘, we also define 

𝑥. 𝑦 = (
(𝑎1. 𝑎2)mod 𝑛 (𝑎1𝑏2 + 𝑏1𝑑2)mod 𝑛

𝑛𝑘−1(𝑐1𝑎2 + 𝑐2𝑑1)mod 𝑛𝑘 (𝑛𝑘−1𝑐1𝑏2 + 𝑑1𝑑2)mod 𝑛𝑘). 

It is easy to check that the multiplication defined above is an associative binary operation 

on 𝐸𝑛,𝑛𝑘. 

In the case of group-platform, the equality 𝑀𝑒𝑑 = 𝑀 can be obtained using the Lagrange 

theorem. However, 𝐸𝑛,𝑛𝑘  is not a multiplicative group since there are many non-invertible 

elements on it. With the aim of reducing to multiplicative group of invertible elements in 𝐸𝑛,𝑛𝑘, 

we define the map 

𝜇: 𝐸𝑛,𝑛𝑘 ⟶ 𝐸𝑝,𝑝𝑘 
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(
𝑎 𝑏

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑
) ⟼ (

𝑎𝑝 𝑏𝑝

𝑝𝑘−1𝑐𝑝 𝑑𝑝
) 

where 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, 𝑑𝑝 ∈ ℤ, 0 ≤ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝 < 𝑝, 0 ≤ 𝑑𝑝 < 𝑝𝑘 , 𝑎 ≡ 𝑎𝑝(mod 𝑝), 𝑏 ≡ 𝑏𝑝(mod 𝑝), 𝑞𝑘−1𝑐 ≡

𝑐𝑝(mod 𝑝)  

and 𝑑 ≡ 𝑑𝑝(mod𝑝𝑘).  

We also define the map  

𝜂: 𝐸𝑛,𝑛𝑘 ⟶ 𝐸𝑞,𝑞𝑘 

(
𝑎 𝑏

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑
) ⟼ (

𝑎𝑞 𝑏𝑞

𝑞𝑘−1𝑐𝑞 𝑑𝑞
) 

where 𝑎𝑞 , 𝑏𝑞 , 𝑐𝑞 , 𝑑𝑞 ∈ ℤ, 0 ≤ 𝑎𝑞 , 𝑏𝑞 , 𝑐𝑞 < 𝑞, 0 ≤ 𝑑𝑞 < 𝑞𝑘, 𝑎 ≡ 𝑎𝑞(mod 𝑞), 𝑏 ≡ 𝑏𝑞(mod 𝑞), 𝑝𝑘−1𝑐 ≡

𝑐𝑞(mod 𝑞) 

and 𝑑 ≡ 𝑑𝑞(mod𝑞𝑘).  

It is easily seen that 𝜇 and 𝜂 are well defined. 

Proposition 3.1 𝜇 and 𝜂 are multiplicative monoid – homomorphisms. 

Proof. For = (
𝑎 𝑏

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑
) , 𝑦 = (

𝑎′ 𝑏′
𝑝𝑘−1𝑞𝑘−1𝑐′ 𝑑′

) ∈ 𝐸𝑛,𝑛𝑘, we have 

𝜇(𝑥) = (
𝑎𝑝 𝑏𝑝

𝑝𝑘−1𝑐𝑝 𝑑𝑝
), 

𝜇(𝑦) = (
𝑎′𝑝 𝑏′𝑝

𝑝𝑘−1𝑐′𝑝 𝑑′𝑝

) 

and 

𝑥𝑦 = (
𝑎𝑎′𝑚𝑜𝑑 𝑛 𝑎𝑏′ + 𝑏𝑑′𝑚𝑜𝑑 𝑛

𝑝𝑘−1𝑞𝑘−1(𝑐𝑎′ + 𝑑𝑐′) 𝑚𝑜𝑑 𝑛𝑘 𝑝𝑘−1𝑞𝑘−1𝑐𝑏′ + 𝑑𝑑′𝑚𝑜𝑑 𝑛𝑘), 

where 

𝑎𝑝, 𝑏𝑝, 𝑐𝑝 , 𝑑𝑝, 𝑎′
𝑝, 𝑏′

𝑝, 𝑐′
𝑝, 𝑑′

𝑝 ∈ ℤ, 0 ≤ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝, 𝑎′
𝑝, 𝑏′

𝑝, 𝑐′
𝑝 < 𝑝, 0 ≤ 𝑑𝑝, 𝑑′

𝑝 < 𝑝𝑘 ,              (1) 

and 

 𝑎𝑝 ≡ 𝑎(𝑚𝑜𝑑 𝑝), 𝑏𝑝 ≡ 𝑏(𝑚𝑜𝑑 𝑝), 𝑐𝑝 ≡ 𝑞𝑘−1𝑐(𝑚𝑜𝑑 𝑝), 𝑑𝑝 ≡ 𝑑(𝑚𝑜𝑑 𝑝𝑘), (2) 

 𝑎′𝑝 ≡ 𝑎′(𝑚𝑜𝑑 𝑝), 𝑏′
𝑝 ≡ 𝑏′(𝑚𝑜𝑑 𝑝), 𝑐′

𝑝 ≡ 𝑞𝑘−1𝑐′(𝑚𝑜𝑑 𝑝), 𝑑′
𝑝 ≡ 𝑑′(𝑚𝑜𝑑 𝑝𝑘). (3) 

From (1)–(3), we obtain 
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 𝑎𝑝𝑎′𝑝 ≡ 𝑎𝑎′(𝑚𝑜𝑑 𝑝), 𝑎𝑝𝑏′𝑝 + 𝑏𝑝𝑑′𝑝 ≡ 𝑎𝑏′ + 𝑏𝑑′(𝑚𝑜𝑑 𝑝),                         (4) 

 𝑐𝑝𝑎′𝑝 + 𝑑𝑝𝑐′𝑝 ≡ 𝑞𝑘−1𝑐𝑎′ + 𝑑𝑞𝑘−1𝑐′(𝑚𝑜𝑑 𝑝),    (5) 

and 

𝑐𝑝𝑏′𝑝 ≡ 𝑞𝑘−1𝑐𝑏′(𝑚𝑜𝑑 𝑝). 

(6) and (5) imply that 

𝑝𝑘−1(𝑐𝑝𝑎′𝑝 + 𝑑𝑝𝑐′𝑝) ≡ 𝑝𝑘−1(𝑞𝑘−1𝑐𝑎′ + 𝑑𝑞𝑘−1𝑐′)(𝑚𝑜𝑑 𝑝𝑘), (6) 

It is deduced from (6) that 

 𝑝𝑘−1𝑐𝑝𝑏′𝑝 ≡ 𝑝𝑘−1𝑞𝑘−1𝑐𝑏′(𝑚𝑜𝑑 𝑝𝑘). (7) 

Combining (3) and (8) gives 

 𝑝𝑘−1𝑐𝑝𝑏′𝑝 + 𝑑𝑝𝑑′𝑝 ≡ 𝑝𝑘−1𝑞𝑘−1𝑐𝑏′ + 𝑑𝑑′(𝑚𝑜𝑑 𝑝𝑘). (8) 

(4), (7) and (9) lead to the equality 𝜇(𝑥𝑦) = 𝜇(𝑥)𝜇(𝑦). Hence, 𝜇 is a homomorphism. 

The same conclusion can be withdrawn for 𝜂. 

Proposition 3.2 The map 𝜆: 𝐸𝑛,𝑛𝑘 ⟶ 𝐸𝑝,𝑝𝑘 × 𝐸𝑞,𝑞𝑘 

𝑀 ↦ 𝜆(𝑀) = (𝜇(𝑀), 𝜂(𝑀) 

is an injection. 

Proof. 

Suppose that 𝑥 = (
𝑎 𝑏

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑
) , 𝑦 = (

𝑎′ 𝑏′
𝑝𝑘−1𝑞𝑘−1𝑐′ 𝑑′

) ∈ 𝐸𝑛,𝑛𝑘 such that 𝜆(𝑥) = 𝜆(𝑦). 

By the definition of 𝜇 and 𝜂, we have 

𝜇(𝑥) = (
𝑎𝑝 𝑏𝑝

𝑝𝑘−1𝑐𝑝 𝑑𝑝
) , 𝜇(𝑦) = (

𝑎′𝑝 𝑏′𝑝

𝑝𝑘−1𝑐′𝑝 𝑑′𝑝

) 

and 

𝜂(𝑥) = (
𝑎𝑞 𝑏𝑞

𝑞𝑘−1𝑐𝑞 𝑑𝑞
) , 𝜂(𝑦) = (

𝑎′𝑞 𝑏′𝑞

𝑞𝑘−1𝑐′𝑞 𝑑′𝑞

) 

where 

𝑎𝑝, 𝑏𝑝 , 𝑐𝑝 , 𝑑𝑝, 𝑎′
𝑝, 𝑏′

𝑝, 𝑐′
𝑝, 𝑑′

𝑝 ∈ ℤ, 0 ≤ 𝑎𝑝, 𝑏𝑝, 𝑐𝑝 , 𝑎′
𝑝, 𝑏′

𝑝, 𝑐′
𝑝 < 𝑝, 0 ≤ 𝑑𝑝 , 𝑑′

𝑝 < 𝑝𝑘 , 

𝑎𝑞 , 𝑏𝑞 , 𝑐𝑞 , 𝑑𝑞 , 𝑎′
𝑞 , 𝑏′

𝑞 , 𝑐′
𝑞 , 𝑑′

𝑞 ∈ ℤ, 0 ≤ 𝑎𝑞 , 𝑏𝑞 , 𝑐𝑞 , 𝑎′
𝑞 , 𝑏′

𝑞 , 𝑐′
𝑞 < 𝑞, 0 ≤ 𝑑𝑞 , 𝑑′

𝑞 < 𝑞𝑘, 
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𝑎𝑝 ≡ 𝑎(𝑚𝑜𝑑 𝑝), 𝑏𝑝 ≡ 𝑏(𝑚𝑜𝑑 𝑝), 𝑐𝑝 ≡ 𝑞𝑘−1𝑐(𝑚𝑜𝑑 𝑝), 𝑑𝑝 ≡ 𝑑(𝑚𝑜𝑑 𝑝𝑘), 

𝑎′𝑝 ≡ 𝑎′(𝑚𝑜𝑑 𝑝), 𝑏′
𝑝 ≡ 𝑏′(𝑚𝑜𝑑 𝑝), 𝑐′

𝑝 ≡ 𝑞𝑘−1𝑐′(𝑚𝑜𝑑 𝑝), 𝑑′
𝑝 ≡ 𝑑′(𝑚𝑜𝑑 𝑝𝑘), 

𝑎𝑞 ≡ 𝑎(𝑚𝑜𝑑 𝑞), 𝑏𝑞 ≡ 𝑏(𝑚𝑜𝑑 𝑞), 𝑐𝑞 ≡ 𝑝𝑘−1𝑐(𝑚𝑜𝑑 𝑞), 𝑑𝑞 ≡ 𝑑(𝑚𝑜𝑑 𝑞𝑘), 

𝑎′𝑞 ≡ 𝑎′(𝑚𝑜𝑑 𝑞), 𝑏′
𝑞 ≡ 𝑏′(𝑚𝑜𝑑 𝑞), 𝑐′

𝑞 ≡ 𝑝𝑘−1𝑐′(𝑚𝑜𝑑 𝑞), 𝑑′
𝑞 ≡ 𝑑′(𝑚𝑜𝑑 𝑞𝑘). 

Since 𝜆(𝑥) = 𝜆(𝑦), we have 𝜇(𝑥) = 𝜇(𝑦) and 𝜂(𝑥) = 𝜂(𝑦). This leads to 

𝑎𝑝 =  𝑎′𝑝 , 𝑏𝑝 = 𝑏′𝑝, 𝑝𝑘−1𝑐𝑝 = 𝑝𝑘−1𝑐′𝑝, 𝑑𝑝 = 𝑑′𝑝 ,  

and 

𝑎𝑞 =  𝑎′
𝑞 , 𝑏𝑞 = 𝑏′

𝑞 , 𝑞𝑘−1𝑐𝑞 = 𝑞𝑘−1𝑐′
𝑞 , 𝑑𝑞 = 𝑑′

𝑞 . 

Since 𝑎𝑝 =  𝑎′𝑝 and 𝑎𝑞 =  𝑎′
𝑞 , we obtain 𝑎 = 𝑎′. By the similar argument, 𝑏 = 𝑏′. 

Since {
𝑝𝑘−1𝑐𝑝 = 𝑝𝑘−1𝑐′

𝑝(𝑚𝑜𝑑 𝑝𝑘)

𝑞𝑘−1𝑐𝑞 = 𝑞𝑘−1𝑐′
𝑞(𝑚𝑜𝑑 𝑞𝑘)

, then {
𝑐𝑝 ≡ 𝑐′

𝑝(𝑚𝑜𝑑 𝑝)

𝑐𝑞 ≡ 𝑐′
𝑞(𝑚𝑜𝑑 𝑞)

. Hence, 𝑐 = 𝑐′. 

Since {
𝑑𝑝 = 𝑑′

𝑝(𝑚𝑜𝑑 𝑝𝑘)

𝑑𝑞 = 𝑑′
𝑞(𝑚𝑜𝑑 𝑞𝑘)

, then 𝑑 = 𝑑′. 

Therefore, 𝑥 = 𝑦. This implies that 𝜆 is an injection. □ 

The equality 𝑀𝑇 = 𝑀 plays a critical role in an RSA-cryptosystem. We will show this 

equality for a suitable integer 𝑇 on a subset 𝑆of 𝐸𝑛,𝑛𝑘. For this, we define  

𝑆 = {𝑀 ∈ 𝐸𝑛,𝑛𝑘: 𝜇(𝑀) ∈ 𝐸
𝑝,𝑝𝑘
∗ , 𝜂(𝑀) ∈ 𝐸

𝑞,𝑞𝑘
∗ }.  

Note that 𝑆 ≠ ∅ , for example, with 𝑀 = (
𝑎 𝑏

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑
) ∈ 𝐸𝑛,𝑛𝑘  where gcd(𝑎, 𝑛) =

gcd(𝑑, 𝑛) = 1, then 𝑀 ∈ 𝑆 according to Proposition 2.3. 

Proposition 3.3 If 𝑇 is a whole number satisfying 𝑇 ≡ 1(mod(𝑝 − 1)2𝑝𝑘+1) and 𝑇 ≡ 1(mod(𝑞 −

1)2𝑞𝑘+1), then 

𝑀𝑇 = 𝑀 

for all 

𝑀 ∈ 𝑆. 

Proof. 

Since  𝜇(𝑀)  is an element of 𝐸
𝑝,𝑝𝑘
∗  which is a multiplicative group with the order of 

(𝑝 − 1)2𝑝𝑘+1, the Lagrange theorem implies that  𝜇(𝑀)𝑇 =  𝜇(𝑀). 
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A similar argument shows that  𝜂(𝑀)𝑇 =  𝜂(𝑀). 

Because 𝜆 is a homomorphism, we have 𝜆(𝑀𝑇) = 𝜆(𝑀)𝑇. This leads to 

𝜆(𝑀𝑇) = ( 𝜇(𝑀)𝑇 ,  𝜂(𝑀)𝑇) = (𝜇(𝑀), 𝜂(𝑀)) = 𝜆(𝑀). 

Therefore, 𝑀𝑇 = 𝑀 since 𝜆 is an injection.  

3.2 The proposed cryptosystem 

Key creation 

 Choose distinct primes 𝑝, 𝑞  and a positive integer 𝑚 . Compute 𝑛 = 𝑝𝑞  and 𝐿 =

lcm((𝑝 − 1)2𝑝𝑘+1, (𝑞 − 1)2𝑞𝑘+1). 

 Choose encryption exponent 𝑒 with gcd(𝑒, 𝐿) = 1. 

 Compute decryption exponent 𝑑 satisfying 𝑒𝑑 ≡ 1(mod 𝐿). 

 Publish 𝑛, 𝑚 and 𝑒 as a public key. Keep 𝑑 as a private key. 

Encryption 

 Choose 𝑎, 𝑑 ∈ ℤ, 1 ≤ 𝑎 < 𝑛, 1 ≤ 𝑑 < 𝑛𝑘 such that gcd(𝑎, 𝑛) = gcd(𝑑, 𝑛) = 1. 

 A plaintext 𝑀 = (
𝑎 𝑏

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑
) ∈ 𝑆  is encrypted by computing 𝐶 = 𝑀𝑒 , where 𝑏, 𝑐 ∈

ℤ, 0 ≤ 𝑏, 𝑐 < 𝑛. 

Decryption 

 A cipher text 𝐶 is then decrypted by computing 𝐶𝑑 = 𝑀. 

To illustrate how the cryptosystem works, we consider the following example. 

3.3 Example 

For setting up the cryptosystem, we choose 𝑝 = 3, 𝑞 = 5 and k = 3. Then 𝑛 = 𝑝𝑞 = 15 and 

𝐿 = lcm((𝑝 − 1)2𝑝𝑘+1, (𝑞 − 1)2𝑞𝑘+1) = 𝑙𝑐𝑚(324,10000) = 810000. 

The value 𝑒 = 991 satisfies the condition gcd(𝐿, 𝑒) = 1, 𝑑 is the inverse for 𝑒 in ℤ𝐿 and it is 

easy to compute d:  𝑑 = 250111. 

Now, assume that Alice would like to send the message 𝑚 = 3 to Bob. Then, Alice will 

choose the values 𝑎, 𝑐, 𝑑  satisfying gcd(𝑎, 𝑛) = gcd(𝑑, 𝑛) = 1  to form the matrix 𝑀 =

(
𝑎 𝑚

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑 ).  



Tran Dinh Long and Le Thi Kim Nga Vol. 127, No. 1A, 2018 

 

108 

 

 

 

If Alice chooses 𝑎 = 13, 𝑐 = 7 and 𝑑 = 8, then 𝑀 = (
13 3

1575 8
). Alice sends the cipher 

matrix 𝐶 = 𝑀𝑒 = (
7 12

2925 1142
) to Bob. Receiving 𝐶 from Alice, Bob computes 𝐶𝑑 = (

13 3
1575 8

) 

and recovers the message 𝑚 = 3 at the 1st row and 2nd row of the result matrix. 

If Alice chooses 𝑎 = 7, 𝑐 = 7 and 𝑑 = 4, then = (
7 3

1575 4
), and the cipher text matrix is 

𝐶 = 𝑀𝑒 = (
13 9

225 1354
). 

The example shows that with the same message 𝑚 = 3, the cipher matrix can have 

various forms depending on the chosen values of 𝑎, 𝑐 and 𝑑. It also shows that two messages 

𝑚1 = 𝑚 = 3 and 𝑚2 = 𝑐 = 7 can be wrapped in the matrix 𝑀. 

4 Discussion 

The encryption and decryption phases in our cryptosystem involve matrix multiplication, 

therefore our scheme involves more operations than that of the original RSA cryptosystem. We 

can overcome this disadvantage by including many real messages to the plaintext matrix 𝑀 =

(
𝑎 𝑏

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑
). Since 𝑑 can be expressed in the form 𝑑 = 𝑑0 + 𝑑1𝑛 + ⋯ + 𝑑𝑘−1𝑛𝑘−1 where 𝑑𝑖 ∈

ℤ, 0 ≤ 𝑑𝑖 < 𝑛, the plaintext 𝑀 now contains k+1 messages 𝑏, 𝑐, 𝑑1, 𝑑2, … , 𝑑𝑘−1. 

Compared to the cryptosystem considered in [4], in which a plaintext is also a matrix, the 

sender must check the non-singularity of the plaintext matrix. In our scheme, the sender does 

not face the similar problem but has to choose 𝑎, 𝑑 satisfying gcd(𝑎, 𝑛) = gcd(𝑑, 𝑛) = 1. These 

conditions do not leak any information of 𝑝 and 𝑞. 

For real messages 𝑏 and 𝑐, we can choose various values 𝑎 and 𝑑 to form the plaintext 

𝑀 = (
𝑎 𝑏

𝑝𝑘−1𝑞𝑘−1𝑐 𝑑
). It leads to the cipher text 𝐶 = 𝑀𝑒 that can have many different values. 

This makes our cryptosystem avoid chosen-plaintext attacks or plaintext checking attack. 

The two-dimension lattice is an effective tool for attacking in the original RSA 

cryptosystem having a small secret exponent [8]. This type of attacking can be applied to our 

cryptosystem as follows. Because 𝑝 and 𝑞 are balanced to avoid factoring modulus attack, then 

𝜑(𝑛) = 𝑛 + 𝑢; where 𝑢 = 1 − 𝑝 − 𝑞 = 𝑂(√𝑛). This leads to 𝐿 = lcm((𝑝 − 1)2𝑝𝑘+1, (𝑞 − 1)2𝑞𝑘+1) =

𝑝𝑘+1𝑞𝑘+1𝑙𝑐𝑚((𝑝 − 1)2, (𝑞 − 1)2) < 𝑛𝑘+2𝜑(𝑛) . The equation 𝑒𝑑 ≡ 1(mod 𝐿)  implies that there 

exists an integer ℎ = 𝑂(𝑑)  such that 𝑒𝑑 = 1 + ℎ𝐿 < ℎ𝑛𝑘+2𝜑(𝑛) = ℎ𝑛𝑘+2(𝑛 + 𝑢) . Hence, 𝑒𝑑 −

ℎ𝑛𝑚+3 < 𝑛𝑘+2𝑘𝑢 . Denote 𝑙 = 𝑒𝑑 − ℎ𝑛𝑘+3, then 𝑙 = 𝑂(𝑑𝑛𝑘+2√𝑛). Consider the two-dimensional 

lattice  𝐻  in ℝ2  spanned by two vectors 𝑣1 = (𝑒, 𝑛𝑘+2√𝑛)  and 𝑣2 = (𝑛𝑘+3, 0) . 𝐻  contains the 
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vector 𝑡 = 𝑑𝑒1 − ℎ𝑒2 = (𝑒𝑑 − 𝑘𝑛𝑘+3, 𝑑𝑛𝑘+2√𝑛)  whose norm is ‖𝑡‖ ≈ 𝑑𝑛𝑘+2√𝑛 . Since 𝑣𝑜𝑙(𝐻)
1

2 =

√𝑛2𝑘+5√𝑛 = 𝑛
4𝑘+11

4 , 𝑡 could be the shortest vector in 𝐻 being a reasonable guess if 𝑑𝑛𝑘+2√𝑛 <

𝑛
4𝑘+11

4  or 𝑑 < 𝑛
1

4. In this case, we can apply the Gaussian algorithm to 𝐻 for finding 𝑡 and then 

recover the private key 𝑑. In the original RSA, the range of 𝑑 is from 1 to (𝑝 − 1)(𝑞 − 1) − 1, in 

which the range 1 < 𝑑 < 𝑛
1

4 is regarded as a weak key case for the two-dimension lattice attack. 

Thus, the probability to succeed the two-dimension lattice attack in the original RSA is 

𝑛
1
4

(𝑝−1)(𝑞−1)
≈

1

𝑛
3
4

 . In our scheme, the range of 𝑑 is from 1 to 𝐿 = lcm((𝑝 − 1)2𝑝𝑘+1, (𝑞 − 1)2𝑞𝑘+1) >

𝑛𝑘+1, and therefore, the probability to succeed two-dimension lattice attack is 
𝑛

1
4

𝐿
<

𝑛
1
4

𝑛𝑘+1 =
1

𝑛
𝑘+

3
4

.  

5 Conclusion 

A new variant of RSA on the platform End(ℤn × ℤnk) has been proposed. Some disadvantages, 

as well as advantages of the cryptosystem in comparison to the original RSA, are also 

considered. We will mention the implementation of the cryptosystem in another paper. As for 

future work, we plan to consider the arithmetic of the ring 𝐸𝑛𝑑(ℤ𝑝 × ℤ𝑝2 × ⋯ × ℤ𝑝𝑘) and to 

establish a variant of RSA on this platform. 
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