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Abstract: The amplitude of the triangular diagrams in the three-body models of deuteron 

induced reactions with charged particles contains the off-shell two-body T -matrix describing 

the intermediate-state Coulomb scattering of charged subsystems. Up to now the latter has 

usually been replaced by the Coulomb potential due to the computational reason. In this 

paper, we first investigate theoretically and numerically the validity of the mentioned 

Coulomb-Born approximation. The results show the important contribution of the higher 

order of the latter approximation for the (d,p) reactions off heavy target.  

1 Introduction 

Treatment the long-range character of the Coulomb interaction in low-energy deuteron induced-

reactions off heavy targets using the 3-body Faddeev formalism [1]  is a challenging task. In 

principle, scattering of deuteron off a nuclear target (an inert core A ) can be exactly described in 

the framework of the Faddeev integral equations written in the AGS form [2]. The latter equations 

are usually solved in momentum-space partial-wave basis where they become a system of 

integral equations with two continuous momenta variables. However, the Faddeev-AGS 

formalism is only designed for short-range potentials. In fact the long-range behavior of Coulomb 

interaction gives rise to severe singularities in the kernel of the integral equation that the latter 

may lack the compactness property known to exist in the case of purely short-range interactions. 

One way of dealing with this problem is to use the screening and renormalization method [3, 5] 

which has successfully described not only the 3-body but also 4-body nuclear systems [6-10]. 

Unfortunately, the technical difficulties arise in the renormalization procedure as the charge of 

the target increases making this approach is unreliable for targets with charge 28Z [11]. So 

after almost 50 years from the pioneer works of A. M. Veselova [4], the Coulomb potential 

remains a serious barrier for having an accurate description of low-energy nuclear reactions using 

the three-body Faddeev integral equations. New approach based on employing the non-screened 

Coulomb potential is derived [12]. Instead of the usual plane-wave basis, the AGS equations are 

cast in a momentum-space Coulomb distorted partial-wave representation. Applying two 

potential formulas the AGS equations are converted to the form in which the matrix elements are 

sandwiched by the Coulomb distorted waves in the initial and final states. The obtained Faddeev-
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AGS equations couple all the neutron transfer, proton transfer, in(elastic) scattering, and 

triangular exchange diagrams (see Fig. 1). The channel Coulomb potentials [sub-diagram (e)] are 

subtracted from the in(elastic) diagram to remove the strongest singularity of the elastic scattering 

triangular diagram with Coulomb four-ray vertex which leads to a noncompact singularity of the 

Faddeev-AGS equations [3, 5, 11]. These generalized Faddeev-AGS equations provide the most 

advanced and complete description of the deuteron induced reactions. Despite the core 

formalism having been developed, in order to make it practical an important additional analytical 

and computational work is required. 

In this paper, we propose a new method to approximately take into account the triangular 

exchange diagrams instead of directly calculating it. Through this investigation we also show for 

the first time the role of the full off-shell Coulomb T-matrix in describing the intermediate-state 

Coulomb scattering of proton and target. In the previous works [13-15], the Coulomb T-matrix is 

usually replaced by the corresponding Coulomb potential. This approximation considerably 

reduces the analytical and numerical efforts due to the treatment of the full off-shell Coulomb T 

matrix. As has been shown in Refs. [16, 17], the Coulomb-Born approximation is accurate to a few 

percent for all energies and scattering angles for the d(p,d)p reaction. A priori, the increase of the 

charge of the nuclear targets gives rise to the uncertainties of the Coulomb-Born approximation. 

To the best of our knowledge the validity of the latter approximation is still an open question in 

the region of medium and heavy targets. 

2 Theoretical Formalism 

We consider the system consisting of two nucleons ( 1  proton and 1  neutron) and a nucleus 

consisting of A nucleons (no core excitation) to the three-body system. Denote the masses of the 

three particles by m , =1,2,3 , and the reduced mass of pair ( , )  is =
m m

m
, 

=
m m

M
m m m

, =
m m

M
m m m

, and =m m m . The sub-figure (d) of the 

Fig. 1 shows the exchange process from the initial channel ( )  to the final channel ( )  

where particle  having a center-of-mass (c.m.) momentum p  impinges on the bound state of 

particles  and  and in the final state particles  and  are bound in a state and particle  is 

free with a c.m. momentum p . This triangular exchange diagram is nothing else the neutron 

transfer diagram taking into account the Coulomb scattering between the proton and the target. 

First, we analytically demonstrate that the inclusion of a four-ray vertex corresponding to the off-

energy shell Coulomb scattering in the triangular exchange diagram will affect neither the 

position nor the character of the proper singularity in cos( )  (  is the scattering angle in c.m.) of 



jos.hueuni.edu.vn                                                                                                                    Vol. 127, No. 1A, 2018 

 

35 

 

 

 

the neutron transfer diagram (pole diagram). The magnitude of the triangular exchange diagram 

( )  is given by (see also Ref. [18-20]) 

 

Fig. 1. Diagrammatical representation of the effective potential of the Faddeev-AGS equations describing 

the deuteuron induced reactions. It includes: the neutron transfer diagram [sub-figure (a)], the proton 

transfer diagram [sub-figure (b)], in(elastic) scattering [sub-figure (c)], and the triangular exchange 

amplitude [sub-figure (d)]. The strongest singularity of the elastic scattering triangular diagram is 

compensated by the subtracted channel Coulomb potential [sub-diagram (e)]. Bubble shows the full off-

shell Coulomb scattering amplitude of proton and target 

   

Fig. 2. The dot-dashed lines show the magnitude of the neutron transfer diagram whereas the solid 

(dashed) lines present the triangular exchange amplitude with (without) Coulomb-Born approximation for 

the d(p,d)p reactions at 1, 15, 30, and 50 MeV 
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Fig. 3. The dot-dashed lines show the magnitude of the neutron transfer diagram whereas the solid 

(dashed) lines present the triangular exchange amplitude with (without) Coulomb-Born approximation for 

the 48 Ca(p,d) 49 Ca reactions at 1, 15, 30, and 50 MeV 

   

Fig. 4. The dot-dashed lines show the magnitude of the neutron transfer diagram whereas the solid 

(dashed) lines present the triangular exchange amplitude with (without) Coulomb-Born approximation for 

the 208 Pb(p,d) 209 Pb reactions at 1, 15, 30, and 50 MeV 
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2 2 2 2

1 1
ˆ( ' , ; ) = 4 ( ' , ; ) ,

(2 ) ˆ ˆ( ' ) ( )

C
dp

M p p z T k k z
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k p p k p p
m m

(1) 

where 2̂ ˆ= 2k z  and 
2

ˆ = ( )
2

p
z z

M
; 2̂ ˆ= 2k z  and 

2

ˆ = ( )
2

p
z z

M
; p  is the momentum 

of the transfer particle. The standard expression for the off-shell Coulomb scattering amplitude 

is [18-20]. 

 2

2

1
ˆ ˆ(k' , k , ) = 4 [ (k' ,k ; )],

(k k' )
CT z Z Z e i I z  (2) 

 
1

0
2 2 2 20

1
ˆ(k' ,k ; ) = d ,lim

ˆ ˆ(k k' ) [ / (2 )][ / (2 )](1 )
ˆ2

i
I z xx

x z i k z i k x
z

  (3) 

where k  and k'  are the relative off-shell momenta of charged particles  and  before and 

after scattering moving with the relative kinetic energy ẑ , 2= /Z Z e k  and 

ˆ= 2k z . 

The closest to the physical region and the strongest singularity of the triangular exchange 

diagram is the one generated by the coincidence of the singularities of the propagators 

2 2ˆ ( p p ) = 0
m

k
m

 and 2 2ˆ (p p' ) = 0
m

k
m

 and the forward singularity of the off-

shell Coulomb singularity 2= (k k' ) = 0  of the Coulomb scattering amplitude. To show 

how these singularity of the triangular exchange diagram appears and to simplify consideration 

we replace the off-shell Coulomb scattering amplitude ˆ(k' , k ; )CT z  of particles  and  by the 

Coulomb-Born amplitude, which is the Fourier transform of the Coulomb potential 24 / . 

Then the amplitude of triangular exchange diagram simplifies to  

 (d) 2

Born 3 2 2 2 2 2

d 1 1 1
( ' , ) = 16 ,

ˆ ˆ(2 ) ( k' ) ( k )
M p p Z Z e

k k
 (4) 

 where we used the substitution p = p p' . Also k = p' ( / )pm m  is the relative 

momentum of particles  and  in the three-ray vertex ( ) . Similarly 
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k' = p ( / )p'm m  is the relative momentum of particles  and  in the three-ray vertex 

( )  of the same diagram. Now we rewrite  

 2 2 2 2ˆ ( k ) = 2 k = [1 2t k ],k t  (5) 

 where we introduced 2 2ˆ= kk  and used the substitution  

 = t.  (6) 

 Similarly  

 2 2 2ˆ ( k' ) = [ 2t k' ].k t  (7) 

Here we took into account that from the energy-momentum conservation in both three-ray 

vertices of the diagram (b) in Fig. 1 follows  

 = .  (8) 

Because we consider the singularity of the triangular exchange diagram generated by the 

coincidence of zeroes of three denominators (pinch-point singularity) in Eq. (4), we use the 

substitution (6) obtaining in the leading order  

 

0

(d)

Born 3 2 3 2
1 2

1 dt 1 1 1 1 dt 1 1 1
(p' , p ) = .

1 2t k(2 ) t (2 ) t
2t k'

M
D D

 (9) 

Thus we have shown that the strongest singularity of the amplitude of the triangular 

exchange diagram is a pole singularity at  

 = 0.  (10) 

The same singularity has the pole diagram in sub-figure (a) in Fig. 1. Moreover  

 (a) 1
(p' ,p )M  (11) 

in Eq. (9) is the amplitude of the pole diagram. We can conclude from the simple consideration 

presented here that near the singularity (10) the amplitude of the triangular exchange diagram 

behaves as renormalized amplitude of the pole diagram in sub-figure (a) of Fig. 1:  
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0

(d) (a) (b)

Born reg
(p' ,p ) = (p' ,p ) (p' ,p ),M D M M  (12) 

where D  is the renormalization factor determining the strength of the pole singularity. The 

additional term ( )

reg
(p' , p )bM  is regular at = 0 . A general expression for the renormalization 

factor for the triangular exchange diagram containing the full CT  Coulomb scattering amplitude 

rather than the Coulomb-Born amplitude was obtained in [21-23]. The renormalization factor, 

which determines the strength of the pole singularity of the triangular exchange diagram, is  

 = 1 ( ) ,
im m m m i m m E

D
m m m m i m m E

 (13) 

 = ( 0) ,
m m

E z i
m m m

   (14) 

  

2

= .
2

Z Z e

E
 (15) 

3 Conclusions 

The analytical results have been demonstrated by the numerical calculations presented in Figs. 2, 

3, and 4. The magnitude of the pole and triangular exchange diagrams have been calculated for 
2 H, 48 Ca and 208 Pb targets at different energies below 50 MeV. The proper singularity of 

triangular exchange diagram (arising as result of simultaneous vanishing of 
1
D  and 

2
D  in the 

denominator of Eq. (9) appears for d(p,d)p reaction at energy higher than 30 MeV, and this 

singularity located farther from the physical domain than the pole singularity. Based on the 

obtained results, we can considerably simplify the calculations of the effective potentials of 

Faddeev-AGS equations by combining the neutron transfer pole amplitudes with the Coulomb 

exchange triangular diagram amplitudes taking into account the fact that near the pole the 

exchange triangular diagram has also a pole singularity. 

To investigate the validity of the Coulomb-Born approximation, it is useful to define the 

ratio of the full off-shell Coulomb T-matrix to the Coulomb potential scattering magnitude 
(d) (d) 2

Full Born
=| / |R M M  which measures the quality of the Coulomb-Born approximation. Fig. 5 

shows the quantity R  for the (d, p) reactions off 2 H, 48 Ca and 208 Pb targets at different energies 

below 50 MeV. In the light-target region, the Coulomb-Born approximation works very well even 

at very low energy around 1 MeV. The obtained results show that the Coulomb-Born 
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approximation is more accurate at small scattering angles less than 80  degree. It fails rather 

dramatically in the medium and completely collapses in heavy regions at any energies below 50 

MeV. We could conclude that the full off-shell Coulomb T matrix must be taken into account for 

the (d,p) reactions off the medium and heavy targets. 

 

Fig. 5. The ratio of the full off-shell Coulomb T-matrix to the Coulomb potential scattering magnitudes in 

function of mass of the target at 1, 15, 30, and 50 MeV 
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This work will serve as basis for future (d,p) reactions code based on the Faddeev-AGS 

equations. This code allows us to extract the information from ( , )n  reactions off the targets from 

very light to heavy region in the nuclear chart. 
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