
 

Hue University Journal of Science: Natural Science; ISSN 1859–1388 
 

Vol. 127, No. 1A, 2018, P. 67–82; DOI: 10.26459/hueuni-jns.v127i1A.4791 

 

* Corresponding: vantat@gmail.com 

Submitted: 13–4–2018; Revised: 29–4–2018; Accepted: 3–5–2018 

 

IN SILICO MODEL QSPR FOR PREDICTION OF STABILITY 

CONSTANTS OF METAL-THIOSEMICARBAZONE 

COMPLEXES 

Nguyen Minh Quang1,3, Tran Xuan Mau1, Pham Van Tat2*,  

Tran Nguyen Minh An3, Vo Thanh Cong3 

1University of Sciences, Hue University, 77 Nguyen Hue St., Hue, Vietnam 
2Faculty of Science and Technology, Hoa Sen University, 93 Cao Thang St., Ho Chi Minh City, Vietnam 
3Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St.,                 

Ho Chi Minh City, Vietnam 

Abstract. In the present work, the stability constants log11 and the concentration of metal 

ion and thiosemicarbazone in the solutions of their complex were determined by using in 

silico models. The 2D, 3D, physicochemical and quantum descriptors of the complexes were 

generated from the molecular geometric structure and semi-empirical quantum calculation 

PM7 and PM7/sparkle. The quantitative structure and property relationships (QSPRs) were 

constructed by using the ordinary linear regression (OLR) and artificial neural network 

(ANN). The best linear model QSPROLR (with k of 6) involved descriptors k0, core-core 

repulsion, xp5, xch5, valence, and SHHBd. The quality of model QSPROLR had the statistical 

values: R2train = 0.898, R2adj = 0.889, Q2LOO = 0.846, MSE = 1.136, and Fstat = 91.348. The neural 

network model QSPRANN with architecture I(6)-HL(6)-O(1) had the statistical values: R2train = 

0.9768, and Q2LOO = 0.8687. The predictability of QSPR models for the complexes of the test 

group turned out to be in good agreement with those from the experimental data in the 

literature. 

Keywords: in silico models, stability constants log11, QSPRs, ordinary linear regression, 
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1 Introduction 

Thiosemicarbazone compounds and its metal complexes have many practical 

applications. Thiosemicarbazones are known as analytical reagents [1, 2] and have biological 

activities [3]. The complexes of thiosemicarbazones and metal ions have biological applications 

and great medicinal activities including antibacterial, antifungal, antimalarial, antitumor, and 

antiviral activity [4–6]. They are also used as a catalyst in chemical reactions [7]. 

For complexes, the stability constant is an important parameter. This is used to identify 

the complex stability in solutions. It is also a measure of the strength of the interaction between 

the ligand and the metal ions to form different complexes. In addition, the stability constant of 
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complexes is the basic factor to explain such phenomena as reaction mechanism and various 

properties of biological systems. We can calculate the equilibrium concentration of ingredients 

in a solution based on the stability constant. The changes of the complex structure in solutions 

can be forecast by using the initial concentration of the metal ion and the ligand. Recently, the 

stability constant of the complexes has been estimated by incorporating the UV/VIS 

spectrophotometric method and the computational techniques [8, 9]. Furthermore, the 

theoretical methods are also used for predicting the stability constant of complexes based on the 

relationships between the structural descriptors and the properties [9]. A few complex 

descriptors between the metal ions and thiosemicarbazone were determined by using quantum 

mechanics methods [12, 13, 20]. 

In recent years, computers have been becoming a helpful tool and an effective means of 

strong calculation in different areas of chemistry, such as inorganic chemistry, analytical 

chemistry, organic chemistry, physical chemistry, material simulation, and data mining [14–16]. 

The molecular design by means of a computer is also a tool to accelerate the discovery process 

for resulting knowledge of material properties. This is also a tendency to reduce the classical 

trial-and-error approach [17]. In this case, the development of molecular models, such as 

quantitative structure and property relationship (QSPR) and conformational search 

methodologies has also contributed greatly to the discovery and development of new molecules 

[18–20]. In this way, the multivariate analysis methods have been becoming a convenient and 

easy tool for supporting empirical and theoretical models. The multivariable linear 

relationships can be used to assess different characteristics of the systems. 

In this work, we report the construction of the quantitative structure and property 

relationships using the structural descriptors and stability constant of complexes between the 

metal ions and thiosemicarbazone. The QSPROLR and QSPRANN models were successfully built 

based on the regression technique and neural network. The stability constant log11 of the 

complexes between the metal ions and thiosemicarbazone in the test set resulting from the 

QSPR models was validated and compared with those from experimental data in the literature. 

2 Computational methods 

2.1 Formation of complex 

In an aqueous solution, the formation of a complex between a metal ion (M) and a 

thiosemicarbazone ligand (L) is, in fact, usually an addition reaction [15]. The general 

equilibrium equation is as follows 
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p M + q L   ⇌   MpLq (1) 

The overall or stability constant, given the symbol β, is the constant for the formation of 

the complex from the reagents. The stability constant for the formation of MpLq is given by  

β𝑝𝑞 =
[M𝑝L𝑞]

[M]𝑝[L]𝑞
 (2) 

The stability constant β refers to the formation of the complex ML in one step with p = 1 

and q = 1  

β11 =
[ML]

[M][L]
 (3) 

a)             

b)     

 

Figure 1. Structure of the complex between metal ions and thiosemicarbazone: a) General complex 

structure; b) Complex between Mn2+ and 3-formylpyridine thiosemicarbazone [21] 

2.2 Data and computational details  

The values logβ11 of complexes between metal ions and the ligand thiosemicarbazone 

were taken from the literature [20–29] (Table 1). 

The complexes of metal ions and ligand thiosemicarbazone were re-built and optimized 

by means of quantum mechanics on the MoPac 2016 system [30]. The quantum descriptors were 

calculated by using the semi-empirical quantum method with new version PM7 and 

PM7/sparkle for lanthanides [31]. The 2D and 3D topological descriptors were calculated by 

using the QSARIS system [10, 32]. The construction of QSPROLR models was performed using 

the back-elimination and forward regression technique on the Regress system [33] and MS-

Excel [10, 14, 34]. The artificial neural network model QSPRANN was constructed using the 
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multilayer training technique on the Visual Gene Developer system [35]. The predictability of 

the QSPRs models was cross-validated by means of the leave-one-out method (LOO) using the 

statistic Q2LOO. 

Table 1. Complexes of metal ions and thiosemicarbazone and stability constant [20–29] 

Ligand 
Metal ions logβ11 

R1 R2 R3 R4 

H H H –C5H4N Ni(II) 5.630 

H H H –C5H4N Mn(II) 4.320 

H H H –C5H4N Co(II) 5.360 

H H H –C5H4N Zn(II) 5.230 

H H H –C6H4OH V(V) 5.322 

H H H –C4H3O Co(II) 5.099 

H H –CH3 –C5H4N La(III) 7.600 

H H –CH3 –C5H4N Pr(III) 7.760 

H H –CH3 –C5H4N Nd(III) 7.950 

H H –CH3 –C5H4N Gd(III) 8.160 

H H –CH3 –C5H4N Sm(III) 8.260 

H H –CH3 –C5H4N Tb(III) 8.340 

H H –CH3 –C5H4N Dy(III) 8.490 

H H –CH3 –C5H4N Ho(III) 8.640 

H H H –C6H5 Ag(I) 15.500 

H H H –C5H4N Ag(I) 14.000 

H H H –C6H4OH Ag(I) 15.600 

H H H –C6H5 Cu(II) 17.700 

H H H –C5H4N Cu(II) 20.400 

H H –CH3 –C2H4NO Cu(II) 19.100 

H H –CH3 –C6H4OH Mg(II) 3.300 

H H –CH3 –C6H4OH Mg(II) 3.030 

H H –CH3 –C6H4OH Mg(II) 2.920 



jos.hueuni.edu.vn                                                                                                                    Vol. 127, No. 1A, 2018 

  

71 

 

 

 

Ligand 
Metal ions logβ11 

R1 R2 R3 R4 

H H –CH3 –C6H4OH Cd(II) 5.590 

H H –CH3 –C6H4OH Cd(II) 4.830 

H H –CH3 –C6H4OH Cd(II) 4.740 

H H –CH3 –C6H4OH Pb(II) 5.740 

H H –CH3 –C6H4OH Pb(II) 5.010 

H H –CH3 –C6H4OH Pb(II) 4.900 

H H H –C6H4NH2 Cu(II) 10.570 

H H H –C6H4NH2 Ni(II) 12.710 

H H H –C6H4NH2 Ni(II) 11.210 

H H H –C6H4NH2 Co(II) 11.950 

H H H –C6H4NH2 Co(II) 9.870 

H H H –C6H4NH2 Mn(II) 12.140 

H H H –C6H4NH2 Mn(II) 9.990 

H H H –C6H4NH2 Zn(II) 11.320 

2.3 Ordinary least square regression 

The ordinary least square regression (OLR) was used to model and predict the values of 

one or more dependent quantitative or qualitative variables by means of a linear combination of 

one or more explanatory quantitative and/or qualitative variables. This technique did not face 

the constraints of ordinary least square regression (OLR) on the number of variables versus the 

number of observations. 

The ordinary least square regression or ordinary linear regression is more commonly 

named linear regression [33, 34]. In this case, the regression model with k explanatory variables 

writes 

𝑌 = β0 +∑𝛽𝑗 · 𝑋𝑗 + ε

𝑘

𝑗=1

 (4) 
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where Y is the dependent variable, β0 is the intercept of the model, βj is the coefficient of the jth 

explanatory variable, Xj corresponds to the jth explanatory variable (with j = 1 to k), and  is the 

random error with mean 0 and variance 2. 

In the case of k observations, the estimation of the predicted value of the dependent 

variable Y is given by expression (5) [36–40] 

�̂� = β̂0 +∑β̂𝑗 · 𝑋𝑗

𝑘

𝑗=1

 (5) 

 The OLR method corresponds to minimizing the sum of squared differences between the 

observed and predicted values. This minimization leads to the following estimators of the 

parameters of the model. The models were screened by using the values R2train and Q2LOO [10, 33–

40]. These were assessed by the same formula (6) 

𝑅2 = 1 −
𝑆𝑆𝐸
𝑆𝑆𝑇

= 1 −

∑ (Y𝑖 − �̂�𝑖)
2𝑛

𝑖=1

∑ (Y𝑖 − �̅�𝑖)
2𝑛

𝑖=1

 (6) 

where Yi, Ŷi, and Ȳ are the experimental, predicted and average value of the response, 

respectively; n is the total number of observations. 

Adjusted R² (R²adj) is the adjusted determination coefficient for the model. The value of 

R²adj can be negative if the R² is close to zero. This coefficient is only calculated if the constant of 

the model has not been fixed by the user. R²adj is defined by 

𝑅𝑎𝑑𝑗
2 = 1 −

𝑀𝑆𝐸
𝑀𝑆𝑇

= 1 −
𝑛 − 1

𝑛 − 𝑘 − 1
· (1 − 𝑅2) (7) 

R²adj is a correction to R², which takes into account the number of variables used in the 

model. The error mean square (MSE) is defined by 

𝑀𝑆𝐸 =

∑ (Y𝑖 − �̂�𝑖)
2𝑛

𝑖=1

𝑛 − 𝑘 − 1
 

(8) 

2.4.  Artificial neural network  

A neural network as a function of a set of derived inputs is called hidden nodes. The 

hidden nodes are nonlinear functions of the original inputs. The neural network can specify 

many layers of hidden nodes [41, 42]. 
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The functions applied at the nodes of the hidden layers are called activation functions. 

The activation function is a transformation of a linear combination of the X variables. The 

function applied at the response is a linear combination of continuous responses, or a logistic 

transformation for nominal or ordinal responses [43, 44]. There are three transfer functions, 

namely sigmoid, hyperbolic tangent, and Gaussian transfer function. 

The main advantage of the neural network is that it can efficiently model different 

response surfaces. Neural networks are very snappy models and tend to overfit data. When that 

happens, the forecast of the model is very good but predicts future observations poorly. The 

weakness of the neural network model is that the results are not easily explainable, since there 

are intermediate layers rather than a direct path from the X variables to the Y variables, as in the 

case of regular regression [45, 46]. To alleviate overtraining, the neural network is validated by 

use of an independent data set to evaluate the predictive ability of the model [41]. 

Validation is a process of using a part of the data set to estimate the model parameters 

and using the other part to assess the predictability of the neural network. The first part is the 

training set used to estimate the model parameters. The second part is the validation set used to 

validate the predictability of the model. The test set is the final, independent assessment of the 

model predictability [42]. 

In this work, we used a typical feed-forward neural network, which was trained by using 

an error back-propagation learning algorithm. This neural network style propagates 

information in the feed-forward direction using equation (9) [41, 42] 

𝑏𝑗 = 𝑓 (∑𝑤𝑖,𝑗 · 𝑎𝑖 − 𝑇𝑗

𝑁

𝑖=0

) (9) 

where ai is the input factor, bj is the output factor, wij is the weight factor between two nodes, Tj 

is the internal threshold, and  is the transfer function. 

There exist many transfer functions that are used in neural networks such as hyperbolic 

tangent, Gaussian, sigmoid… In this study, we used the hyperbolic tangent function. The 

hyperbolic tangent learning algorithm is based on a generalized delta rule accelerated by a 

momentum term. To increase the efficiency of the neural network, both the weight factors and 

the internal threshold values were adjusted using equations (10) and (11) [41, 42] 

𝑊𝑖,𝑗
𝑛𝑒𝑤 = 𝑤𝑖,𝑗

𝑜𝑙𝑑 + 𝜂 ·∑δ𝑘,𝑗 · 𝑂𝑘,𝑖 + α · ∆𝑊𝑖,𝑗
𝑜𝑙𝑑

𝑘

 (10) 
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𝑇𝑗
𝑛𝑒𝑤 = 𝑇𝑗

𝑜𝑙𝑑 + 𝜂 ·∑δ𝑘,𝑗 + α · ∆𝑇𝑗
𝑜𝑙𝑑

𝑘

 (11) 

where  is the learning rate;  is the momentum coefficient; W is the previous weight factor 

change; T is the previous threshold value change; O is the output – the gradient-descent 

correction term; and k stands for the pattern. The performance of the trained network was 

verified by determining the error between the predicted value and the real value. All the data of 

the patterns were normalized to be less than 1 before training the neural network; the initial 

weight factors were randomly generated from –0.2 to 0.2, and the initial internal threshold 

values were set to zero. 

3 Results and discussion 

3.1 Constructing models QSPROLR 

The QSPROLR model was constructed from the database of complexes between metal ions 

and the ligands including the 2D and 3D molecular descriptors, and the quantum parameters. 

The general complex structure is shown in Fig. 1a and 1b, and the stability constant logβ11 is 

given in Table 1. 

The linear regression model was constructed based on the training set and the test set, in 

which the portion of the test set is 20 %. The model quality was evaluated by means of statistical 

values R2train, R2adj, Q2LOO and Fstat (Fischer’s value). The QSPROLR models and the statistical values 

are shown in Table 2.  

The best linear models QSPROLR were selected using the back-elimination and forward 

method with the critical value  = 0.05; the important descriptors selected were based on the 

changes of the statistical parameters: standard error – SE, R2train, R2adj, Q2LOO, and Fstat. The 

number of descriptors k was selected in range 2 to 10. The change of the amount of structural 

parameter leads to the change of the values SE, R2train and Q2LOO (Figure 2a). 

Table 2. Selected model QSPROLR (k of 2 to 10) and statistical values 

k Variables SE R²train R²adj Q²LOO Fstat 

2 x1/x2 2.136 0.617 0.606 0.550 53.234 

3 x1/x2/x3 1.649 0.775 0.765 0.705 74.789 

4 x1/x2/x3/x4 1.504 0.816 0.806 0.755 71.012 
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k Variables SE R²train R²adj Q²LOO Fstat 

5 x1/x2/x3/x4/x5 1.347 0.855 0.843 0.799 74.173 

6 x1/x2/x3/x4/x5/x6 1.136 0.898 0.889 0.846 91.348 

7 x1/x2/x3/x4/x5/x6/x7 1.024 0.919 0.909 0.786 98.462 

8 x1/x2/x3/x4/x5/x6/x7/x8 0.925 0.935 0.926 0.829 107.373 

9 x1/x2/x3/x4/x5/x6/x7/x8/x9 0.871 0.943 0.934 0.850 108.659 

10 x1/x2/x3/x4/x5/x6/x7/x8/x9/x10 0.802 0.953 0.944 0.862 116.588 

Notation of molecular descriptors 

k0 x1  SHHBd x6 

core-core repulsion x2  xp4 x7 

xp5 x3  HOMO x8 

xch5 x4  LUMO x9 

valence x5  xvc3 x10 

The average contribution percentage, MPxk,i, is the percentage of each independent 

variable in the selected models QSPRs (with i of 1 to k), is determined according to formula (12) 

by the contribution for Ctotal value [10, 32] 

𝑀𝑃𝑥𝑘,𝑖 , % =
1

𝑁
∑

100. |𝑏𝑘,𝑖 . 𝑥𝑚,𝑖|

∑ |𝑏𝑘,𝑗 . 𝑥𝑚,𝑗|
𝑘
𝑗=1

𝑁

𝑚=1

=
1

𝑁
∑

100. |𝑏𝑘,𝑖 . 𝑥𝑚,𝑖|

𝐶𝑡𝑜𝑡𝑎𝑙

𝑁

𝑚=1

 (12) 

where N is the number of substances (N = 69); m is the number of substances used to calculate 

Pxk,i value; bk,i are the parameters of the model. The important contribution of molecular 

descriptors in each complex is arranged in the order based on GMPxi values (GMPxi is the 

average value of MPxk,i): k0 > xp5 > core-core repulsion > xch5 > valence > SHHBd (Table 3). 

In the surveyed models, the QSPROLR model (with k = 6) has the best Q2LOO value although 

it changes when k increases. Thus, this QSPROLR model is the best match in all the models. The 

quality of the QSPROLR model is shown with the R2train value of 0.898; the standard error SE of 

1.136; the Fstat value of 91.348 and the Q2LOO value of 0.846. The linear regression equation of the 

QSPROLR model is as follows 

logβ11 = 66.01  – 5.861 · x1 + 0.00137 · x2 + 7.246 · x3 – 39.35 · x4 – 1.745 · x5 + 2.07 · x6 (13) 
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a) 

 

b)

 

Figure 2. a) Change trend line of values SE, R2train and Q2LOO according to k descriptors; b) Correlation of 

experimental versus predicted values logβ11 of the test compounds using the QSPROLR model                           

(with k = 6) 

 The importance of each descriptor in QSPROLR model (13) or rather the contribution of the 

descriptors to the stability constant of the complexes is assessed according to the GMPxi, % 

values. The k0 parameter (x1) with the GMPx1 value of 55.5680 influences the stability constant 

of complexes most. The k0 parameter is called Kappa zero index, i.e., Shannon information 

index based on atom classes. Next, the xp5 parameter is called Chi path 5, the simple 5th-order 

path Chi index (x3) with the GMPx3 value of 14.6137. The last parameter that strongly affects the 

stability constant is core-core repulsion (x2) with the GMPx2 value of 10.7750. 

Table 3. Statistical values and variables, and MPxk,i and GMPxi contribution in models QSPROLR                               

with k of 5 to 7 

Statistical 

values and 

variables 

QSPROLR MPxk,i, % 

GMPxi, % 
k = 5 k = 6 k = 7 k = 5 k = 6 k = 7 

R2train 0.855 0.898 0.919 – – – – 

R2adj 0.843 0.889 0.909 – – – – 

Q2LOO 0.799 0.846 0.786 – – – – 

SE 1.347 1.136 1.024 – – – – 

Constant 51.11 66.01 68.9 – – – – 
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Statistical 

values and 

variables 

QSPROLR MPxk,i, % 

GMPxi, % 
k = 5 k = 6 k = 7 k = 5 k = 6 k = 7 

x1 –5.08 –5.861 –8.094 59.4123 63.0614 44.2303 55.5680 

x2 0.00263 0.00137 0.00095 19.6377 9.4153 3.1953 10.7750 

x3 5.37 7.246 –9.05 14.5019 17.9917 11.3473 14.6137 

x4 –33.93 –39.35 –87.73 3.3895 3.6193 4.0628 3.6905 

x5 –1.613 –1.745 0.996 3.0585 3.0427 0.8777 2.3263 

x6 – 2.07 4.494 – 2.8696 3.3202 2.0633 

x7 – – 20.76 – – 32.9662 10.9887 

As such, the training data set is good, and the application of QSPROLR model is 

statistically very meaningful. The cross-validated technique shows that the QSPROLR model can 

be used to predict the logβ11 values. The statistical values were used to check the meaning of the 

coefficients in the QSPROLR models, as given in Table 3.  

3.2 Constructing models QSPRANN 

In addition to model QSPROLR, the QSPRANN model was also developed with the neural 

network technique on the Visual Gene Developer system [35] upon the molecular descriptors of 

model QSPROLR. The architecture of the neural network comprising three layers is I(6)-HL(6)-

O(1) (Fig. 3a); the input layer I(6) includes 6 neurons (k0, core-core repulsion, xp5, xch5, 

valence, and SHHBd); the output layer O(1) includes 1 neuron, that is, logβ11; the hidden layer 

includes 6 neurons.  

 
a) 

 
b) 

Fig. 3. a) Architecture of neural network I(6)-HL(6)-O(1);  

b) Correlation of experimental vs. predicted values of test set from QSPROLR and QSPRANN model 
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The error back-propagation algorithm was used to train the network. The hyperbolic 

tangent transfer function was set on each node of the layers; the training network parameters 

included the learning rate of 0.01, the momentum coefficient of 0.1, and the sum of error of 

0.000016 with 1,000,000 loops. The results of the training process are given in Table 4. 

Table 4. Training quality of neural network QSPRANN I(6)-HL(6)-O(1) 

Data set Regression coefficient Slope y-intercept 

Training 0.9768 0.9770 0.00253 

Validation 0.8687 1.4432 –0.1397 

As can be seen from Fig. 3b, the neural model QSPRANN based on the architecture of 

neural network I(6)-HL(6)-O(1) adapted better than the QSPROLR model. In fact, the neural 

model QSPRANN exhibited a better fit and correlation between the predicted values and the 

experimental values than the QSPROLR model with Q2 of 0.8773 and 0.7440, respectively. 

3.3 Predictability of QSPR models 

The predictability of the QSPROLR and QSPRANN model was carefully evaluated by means 

of the phasing-each-case technique. The predicted results received for 9 randomly chosen 

substances with the experimental values [27–29, 45, 46] are presented in Table 5. 

The average absolute values of the relative error MARE used to assess the overall error of 

the QSPR models were calculated according to formula (14) 

𝑀𝐴𝑅𝐸,% =
∑ 𝐴𝑅𝐸𝑖 , %
𝑛
𝑖=1

𝑛
 (14) 

where 𝐴𝑅𝐸,% =
|log β11,𝑒𝑥𝑝− log β11,𝑐𝑎𝑙|

log β11,𝑒𝑥𝑝
, n is the number of test substances; and β11,exp and β11,cal are 

the experimental and calculated stability constants. 

Table 5. Stability constant of 9 test substances resulting from QSPROLR model and model QSPRANN 

n 
Ligand Metal 

Ions 
logβ11,exp 

The linear model 

QSPROLR 

The neural model 

QSPRANN 

R1 R2 R3 R4 logβ11,cal ARE, % logβ11,cal ARE, % 

1 H CH3 CH3 –C5H4N Cu(II) 6.114 6.5280 6.7721 9.7353 59.2289 

2 H H H –C6H4BrO Cu(II) 5.633 7.0116 24.4729 2.9897 46.9245 
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n 
Ligand Metal 

Ions 
logβ11,exp 

The linear model 

QSPROLR 

The neural model 

QSPRANN 

R1 R2 R3 R4 logβ11,cal ARE, % logβ11,cal ARE, % 

3 H H H –C6H4OH Ag(I) 15.700 14.1818 9.6700 15.2536 2.8435 

4 H H H –C5H6N Cu(II) 19.100 10.0826 47.2116 16.0061 16.1984 

5 H H H –C6H4OH Cu(II) 19.100 12.7401 33.2981 16.4007 14.1325 

6 H H H –C6H4OH Cu(II) 17.200 14.4635 15.9098 12.5361 27.1158 

7 H H CH3 –C6H4OH Mn(II) 4.320 6.4178 48.5592 4.4445 2.8828 

8 H H CH3 –C6H4OH Ni(II) 5.140 7.4541 45.0205 4.3317 15.7250 

9 H H CH3 –C6H4OH Cu(II) 5.810 8.2349 41.7361 4.3133 25.7603 

 MARE, % 30.295 
MARE, 

% 
23.424 

One-way ANOVA was used to evaluate the difference between the experimental and 

predicted logβ11 values from the QSPROLR and QSPRANN model. Accordingly, the discrepancies 

between the experimental and calculated values of stability constants logβ11 resulting from the 

QSPROLR model and the QSPRANN model I(6)-HL(6)-O(1) were insignificant (F = 0.1728 < F0.05 = 

3.4028). Therefore, the predictability of both QSPR models turns out to be in good agreement 

with the experimental data. 

The MARE values of models QSPROLR and QSPRANN I(6)-HL(6)-O(1) were 30.295 % and  

23.424 %, respectively (Table 5), indicating that model QSPRANN showed higher predictability 

than model QSPROLR, and the logβ11 values resulting from model QSPRANN were closer to the 

experimental values. 

4 Conclusion 

This work successfully built the quantitative structure and property relationships 

incorporating ordinary linear regression and artificial neural network. The QSPR models were 

constructed by using the data set of structural descriptors resulting from the semi-empirical 

quantum calculation and molecular mechanics. The models were cross-validated carefully 

using the leave-one-out method upon statistical values R2train, Q2LOO, MARE, %, and the single 

factor ANOVA method. The QSPRANN model I(6)-HL(6)-O(1) turned out to be satisfactory for 

actual applicability. The results from this work could serve for designing new 
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thiosemicarbazone derivatives that are helpful in the fields of analytical chemistry, pharmacy, 

and environment. 
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