ON THE HILBERT COEFFICIENTS AND REDUCTION NUMBERS

Ton That Quoc Tan*

Faculty of Natural Sciences, Duy Tan University, 254 Nguyen Van Linh St., Thanh Khe, Da Nang, Vietnam

* Correspondence to Ton That Quoc Tan <tontquoctan@dtu.edu.vn> (Received: 02 May 2020; Accepted: 28 June 2020)

Abstract. Let (R,m) be a noetherian local ring with $dim(R) = d \ge 1$ and $depth(R) \ge d - 1$. Let *I* be an *m*-primary ideal of *R*. In this paper, we study the non-positivity of the Hilbert coefficients $e_i(I)$ under some conditions.

Keywords: Hilbert coefficients, reduction numbers, Castelnuovo-Mumford regularity, *m*-primary ideals, the depth of associated graded rings

1 Introduction

Let (R, m) be a noetherian local ring of dimension $d \ge 1$ and I an m-primary ideal of R. Let $\ell(.)$ denote the length of an R-module. The Hilbert-Samuel function of R with respect to I is the function $H_I: \mathbb{Z} \to \mathbb{N}_0$ given by

$$H_{I}(n) = \begin{cases} \ell(R/I^{n}) & if \ n \ge 0; \\ 0 & if \ n < 0. \end{cases}$$

There exists a unique polynomial $P_I(x) \in \mathbb{Q}[x]$ (called the *Hilbert- Samuel polynomial*) of degree *d* such that $H_I(n) = P_I(n)$ for $n \gg 0$ and it is written by

$$P_{I}(n) = \sum_{i=0}^{d} (-1)^{i} {n+d-i-1 \choose d-i} e_{i}(I).$$

Then, the integers $e_i(I)$ is called *Hilbert coefficients* of *I*. The aim of this paper is to study the non-positivity of Hilbert coefficients.

In 2010, Mandal-Singh-Verma [1] showed that $e_1(I) \leq 0$ for all parameter ideals *I* of *R*. If $depth(R) \geq d-1$, McCune [2] showed that $e_2(I) \leq 0$ and Saikia-Saloni [3] proved that $e_3(I) \leq 0$ for every parameter ideal *I*. Recently, Linh-Trung [4] proved that if $depth(R) \geq d-1$ and *I* is a parameter ideal such that $depth(G(I)) \ge d - 2$, then $e_i(I) \le 0$ for i = 1, ..., d. In [5], Puthenpurakal obtained remarkable results that if *I* is an *m*-primary ideal of a ring *R* with dimension 3 such that $r(I) \le 2$, then $e_3(I) \le 0$.

The main result of this paper is to give an improvement of the result of Linh-Trung [4].

Theorem 3.3 Let (R,m) a noetherian local ring with $dim(R) = d \ge 2$ and $depth(R) \ge d - 1$. Let I be an m-primary ideal of R such that $depth(G(I)) \ge d - 2$. For i = 1, ..., d, if $r(I) \le i - 1$ then $e_i(I) \le 0$.

2 Preliminary

Let (R, m) be a noetherian local ring of dimension d and I be an m-primary ideal of R. A numerical function

$$\begin{split} H_I: \mathbb{Z} &\to \mathbb{N}_0 \\ n &\mapsto H_I(n) = \begin{cases} \ell(R/I^n) & \text{if } n \geq 0; \\ 0 & \text{if } n < 0. \end{cases} \end{split}$$

is said to be a *Hilbert-Samuel function* of *R* with respect to the ideal *I*. It is well known that there exists a polynomial $P_I \in \mathbb{Q}[x]$ of degree *d* such

that $H_I(n) = P_I(n)$ for $n \gg 0$. The polynomial P_I is called the *Hilbert-Samuel polynomial* of *R* with respect to the ideal *I*, and it is written in the form

$$P_{I}(n) = \sum_{i=0}^{d} (-1)^{i} {\binom{n+d-i-1}{d-i}} e_{i}(I),$$

where $e_i(I)$ for i = 0, ..., d are integers, called Hilbert coefficients of *I*. In particular, $e(I) = e_0(I)$ and $e_1(I)$ are called the *multiplicity* and *Chern coefficient* of *I*, respectively.

An element $x \in I \setminus mI$ is said to be *superficial* for *I* if there exists a number $c \in \mathbb{N}$ such that $(I^n: x) \cap I^c = I^{n-1}$ for n > c. If R/m is infinite, then a superficial element for *I* always exists. A sequence of elements $x_1, ..., x_r \in I \setminus mI$ is said to be a *superficial sequence* for *I* if x_i is superficial for $I/(x_1, ..., x_{i-1})$ for i = 1, ..., r.

Suppose that $dim(R) = d \ge 1$ and $x \in I \setminus mI$ is a superficial element for I, then $\ell(0:_R x) < \infty$ and dim(R/(x)) = dim(R) - 1 = d - 1. The following lemma give us a relationship between $e_i(I)$ and $e_i(I_1)$, where $I_1 = I(R/(x))$.

Lemma 2.1 [6, Proposition 1.3.2] Let R be a noetherian local ring of dimension $d \ge 2$ and I an m-primary ideal of R. Let $x \in I \setminus mI$ be a superficial element for I and $I_1 = I(R/(x))$. Then

(i)
$$e_i(I) = e_i(I_1)$$
 for $i = 0, ..., d - 2$;

(ii)
$$e_{d-1}(I) = e_{d-1}(I_1) + (-1)^d \ell(0:x).$$

If denote by $G(I) = \bigoplus_{n \ge 0} I^n / I^{n+1}$ the associated graded ring of *R* with respect to *I* and

$$a_i(G(I)) = \sup\{n \mid H^i_{G(I)_+}(G(I))_n \neq 0\}$$

where $H^{i}_{G(I)_{+}}(G(I))$ is the *i*-th local cohomology module of G(I) with respect to $G(I)_{+}$. The *Castelnuovo-Mumford regularity* of G(I), reg(G(I)), is defined by

 $reg(G(I)) = max\{a_i(G(I)) + i \mid i \ge 0\}.$

Recall that an ideal $J \subseteq I$ is called a *reduction* of I if $I^{n+1} = JI^n$ for $n \gg 0$. If J is a

reduction of *I* and no other reduction of *I* is contained in *J*, then *J* is said to be a *minimal reduction* of *I*. If *J* is a minimal reduction of *I*, then the *reduction number of I with respect to J*, $r_J(I)$, is given by

 $r_I(I) := \min\{ n \mid I^{n+1} = JI^n \}.$

The *reduction number* of *I*, denoted r(I), is given by

r(I): = min{ $r_I(I) \mid J$ is a minimal reduction of I}.

A relationship between the reduction number of *I*, $a_d(G(I))$ and reg(G(I)) is given by the following lemma.

Lemma 2.2 [7, Proposition 3.2] $a_d(G(I)) + d \le r(I) \le reg(G(I)).$

3 Main result

Throughout this section, (R, m) is a noetherian local ring of dimension d and $depth(R) \ge d - 1$. Let I be an m-primary ideal of R. In [8], Elias considered the numerical function

$$\begin{aligned} \sigma_I &\colon \mathbb{N} &\longrightarrow \mathbb{N} \\ k &\mapsto \sigma_I(k) = depth(G(I^k)). \end{aligned}$$

Elias [8] showed that σ_l is a non-decreasing function and $\sigma_l(k)$ is a constant for $k \gg 0$. This constant is denoted by $\sigma(l)$.

$$a_i(G(I^k)) \le \left[\frac{a_i(G(I))}{k}\right]$$
 for all $i \le d$ and $k \ge 1$,

where $[a] = max\{m \in \mathbb{Z} \mid m \le a\}$. Thus, for $i \ge 0$, we have

$$a_i(G(l^k)) \le 0 \quad \text{for} \quad k \gg 0 \tag{1}$$

and

$$\sigma(I) \ge depth(G(I)). \tag{2}$$

The following theorem gives a nonpositivity for the last Hilbert coefficient. **Theorem 3.1** [10, Theorem 2.4] Let (R,m) be a noetherian local ring of dimension $d \ge 2$ and $depth(R) \ge d - 1$. Let I be an m-primary ideal such that $r(I) \le d - 1$ and $\sigma(I) \ge d - 2$. Then, $e_d(I) \le 0$.

For $k \gg 0$, let $J = I^k$, $R = R[Jt] = \bigoplus_{n \ge 0} J^n$ denote the Rees algebra of R with respect to J, R_+ $= \bigoplus_{n>0} R_n$. By [11, Theorem 4.1] and [11, Theorem 3.8], we have

$$(-1)^{d} e_{d}(I) = (-1)^{d} e_{d}(J) = P_{J}(0) - H_{J}(0)$$
$$= \sum_{i=0}^{d} (-1)^{i} \ell(H_{R_{+}}^{i}(R)_{0})$$
$$= \sum_{i=0}^{d} (-1)^{i} \ell(H_{G(J)_{+}}^{i}G(J)_{0}).$$

Since $\sigma(I) = depth(G(J)) \ge d - 2$, $H^i_{G(I)_+}(G(I)) = 0$ for i = 0, ..., d - 3. By Lemma 2.2, we have $a_d(G(J)) + d \le r(J)$. From [9, Lemma 2.7],

$$r(J) \le \frac{|r(I) + 1 - s(I)|}{k} + s(I) - 1$$
$$= \frac{|r(I) + 1 - d|}{k} + d - 1 \le d - 1.$$

Hence, $a_d(G(J)) < 0$. On the other hand, $a_i(G(J)) \le 0$ for all $i \ge 0$ from (1). By applying [12, Theorem 5.2], we get $a_{d-2}(G(J)) < a_{d-1}(G(J)) \le 0$. It follows that

$$(-1)^{d} e_{d}(I) = (-1)^{d-1} \ell(H^{d-1}_{G(J)_{+}} G(J)_{0}).$$

This implies that $e_d(I) = -\ell(H^{d-1}_{G(J)_+}(G(J))_0) \le 0$. From the proof of Theorem 3.1, we obtain the following corollary.

Corollary 3.2 Let (R,m) be a noetherian local ring of dimension $d \ge 2$ and $depth(R) \ge d - 1$. Let I be an m-primary ideal such that $reg(G(I)) \le d - 2$ and $\sigma(I) \ge d - 2$. Then, $e_d(I) = 0$.

For $k \gg 0$, set $J = I^k$. Since $reg(G(I)) \le d-2$,

$$max\{a_{d-1}(G(I)) + d - 1, a_d(G(I)) + d\} \le d - 2.$$

Thus, $a_i(G(I)) \leq -1$ for i = d - 1, d. By [9, Lemma 2.4],

 $a_i(G(I^k)) \le [a_i(G(I))/k].$

Therefore,

 $max\{a_{d-1}(G(J)), a_d(G(J))\} \le -1.$

From the proof of Theorem 3.1, we have

 $e_d(I) = -\ell(H^{d-1}_{G(J)_+}(G(J))_0) = 0.$

In [4], Linh-Trung proved that if Q is a parameter ideal such that $depth(G(Q)) \ge d - 2$, then $e_i(Q) \le 0$ for all i = 1, ..., d. In this case, r(Q) = 0. The following theorem is an improvement of Linh-Trung's result.

Theorem 3.3 Let (R,m) a noetherian local ring with $\dim(R) = d \ge 2$ and $depth(R) \ge d - 1$. Let I be an m-primary ideal of R such that $depth(G(I)) \ge d - 2$. For i = 1, ..., d, if $r(I) \le i - 1$, then $e_i(I) \le 0$.

It is clear that the theorem holds for d = 2.

Now, we consider d > 2. By [4, Theorem 1], the theorem holds for the case i = 1.

In the case i = d, by assumption, we have $r(l) \le d - 1$ and $\sigma(l) \ge depth(G(l)) \ge d - 2$. By applying Theorem 3.1, we obtain $e_d(l) \le 0$. So, we need to prove for i = 2, ..., d - 1.

Without loss of generality, we assume that R/m is infinite and $x_1, ..., x_{d-i}$ is a superficial sequence for I. Let $R_i = R/(x_1, ..., x_i)$ and $I_i = IR_i$. Then, $e_i(I) = e_i(I_{d-i})$ from Lemma 2.1. From this hypothesis, it follows that

$$dim(R_{d-i}) = i \ge 2, \quad depth(R_{d-i})$$
$$\ge i - 1 \quad \text{and} \quad depth(G(I_{d-i}))$$
$$\ge i - 2.$$

We have $r(I_{d-i}) \le r(I) \le i - 1$. From (2), we get $\sigma(I_{d-i}) \ge depth(G(I_{d-i})) \ge i - 2$. Appying Theorem 3.1, we obtain

 $e_i(I) = e_i(I_{d-i}) \le 0$ for i = 2, ..., d - 1.

The proof is complete.

Combining Theorem 3.3 and Corollary 3.2, we get the following corollary.

Corollary 3.4 Let (R,m) be a noetherian local ring with $dim(R) = d \ge 2$ and $depth(R) \ge d - 1$.

Let I be an m-primary ideal of R such that $depth(G(I)) \ge d - 2$. For i = 1, ..., d, if $reg(G(I)) \le i - 2$, then $e_i(I) = 0$.

References

- 1. Mandal M, Singh B, Verma JK. On some conjectures about the Chern numbers of filtration. Journal of Algebra. 2011;325(1):147-162.
- 2. McCune L. Hilbert coefficients of parameter ideals, J Commutative Algebra. 2013;5(3):399-412.
- Saikia A, Saloni K. Bounding Hilbert coefficients of parameter ideals. Journal of Algebra. 2018;501 (1):328-344.
- 4. Linh CH, Trung VD. Hilbert coefficients and the depth of associated graded rings. Vietnam Journal of Mathematics. 2019;47(2):431-442.
- 5. Puthenpurakal TJ. Ratliff-Rush filtration, regularity and depth of higher associated graded modules Part II. Journal of Pure and Applied Algebra. 2017; 221 (3):611-631.

- Rossi ME, Valla G. Hilbert Functions of Filtered Modules. Vol 9. Berlin (DE): Springer-Verlag Berlin Heidelberg; 2010. 100 p.
- Trung NV. Reduction exponent and degree bound for the defining equations of graded rings. Proceedings of the American Mathematical Society. 1987;101(2):229-236.
- Elias J. Depth of higher associated graded rings. Journal London Mathematical Society. 2004;70(1): 41-58.
- 9. Hoa LT. Reduction numbers and Rees algebra of powers of an ideal. Proceedings of the American Mathematical Society. 1993;119(2):415-422.
- Linh CH . Bounds for Hilbert coefficients. Viasm: Preprint_1913 [Preprint]. 2019.
- 11. Blancafort C. On Hilbert functions and cohomology. Journal of Algebra. 1997;192(1):439-459.
- Hoa LT. Reduction numbers of equimultiple ideals. Journal of Pure and Applied Algebra. 1996;109 (2):111-126.