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Abstract. It has been conjectured that all graded Artinian Gorenstein algebras of codimension three 

have the weak Lefschetz property over a field of characteristic zero. In this paper, we study the weak 

Lefschetz property of associated graded algebras A of the Apéry set of M-pure symmetric numerical 

semigroups generated by four natural numbers. These algebras are graded Artinian Gorenstein 

algebras of codimension three. 
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1 Introduction 

The weak Lefschetz property (WLP for short) for 

an Artinian graded algebra A  over a field K  

simply says that the multiplication by a general 

linear form 1:[ ] [ ] + →i iL A A  has a maximal rank 

in every degree i . At first glance, this might seem 

to be a simple problem of linear algebra. 

However, determining which graded Artinian K

-algebras have the WLP is notoriously difficult. 

Most authors have studied the problem from 

different points of view, applying tools from 

representation theory, topology, vector bundle 

theory, plane partitions, differential geometry, 

among others (see for instance [1-9]). 

One of the most interesting open problems 

in this field is whether all graded Artinian 

Gorenstein algebras of codimension three have 

the WLP in characteristic zero. In the special case 

of codimension three complete intersections, a 

positive answer was obtained in characteristic 

zero in [10] by using the Grauert-Mülich theorem. 

For positive characteristic, however, only the case 

of monomial complete intersections has been 

studied (see [11, 12]), applying different 

approaches from combinatorics. 

For the case of Gorenstein algebras of 

codimension three that are not necessarily 

complete intersections, it is known that for each 

possible Hilbert function, an example exists, 

having the WLP [13]. Some partial results are 

given in [14] to show that for certain Hilbert 

functions, all such Gorenstion algebras have the 

WLP. It was shown in [15] that all codimension 

three Artinian Gorenstein algebras of socle degree 

at most 6 have the WLP in characteristic zero, but 

the general case remains completely open. 

In this work, we study whether Artinian 

Gorenstein algebras of codimension three 

associated to the Apéry set of numerical 

semigroups have the WLP. More precisely, we 

consider a numerical semigroup P  generated by 
4

1 2 3 4{ , , , }a a a a  with 1 2 3 4( , , , ) =1gcd a a a a . The 

Apéry set ( )Ap P  of P  with respect to the minimal 

generator of the semigroup is defined as follows: 
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1 1 2
1

( ) :={ }={0 = < < < }.   − | aAp P a P a a P

 Notice that ( )Ap P  is a finite set and 

1# ( ) = .Ap P a  Recall that a numerical semigroup 

P  is said to be M -pure symmetric if for each 

1=1, ,i a , 1
1 1

=  − ++i a i a  and 

1
1 1

( ) ( ) = ( )  − ++i a i aord ord ord , where  

4 4

=1 =1

( ) := { = }  max |i i i

i i

ord a a a  

is the order of a P . Therefore, the Apéry set of a 

M -pure symmetric semigroup has the structure 

of a symmetric lattice. 

Let K  be a field of characteristic zero and 

consider the homomorphism  

1 4
1 4: := [ , , ] [ ]:= [ , , ], →

a a
S K x x K P K t t  

which sends .
a
i

ix t  Then, [ ] / ( ) K P S Ker  is 

a one-dimensional ring associated to P . Now, set 

1= / ( ).S S x  Then, there is one to one 

correspondence between the elements of ( )Ap P  

and the generators of S  as a K -vector space. Let 

m  be the maximal homogeneous ideal of S , 

define the associated graded algebra of the Apéry set 

of P   

1
0

= ( ) := .
+


m

m

m

i

i
i

A gr S  

It follows that A  is a standard graded 

Artinian K -algebra of codimension three. In his 

work [16], Bryant proved that A  is Gorenstein if 

and only if P  is M -pure symmetric. In a recent 

paper [17], Guerrieri showed that if A  is an 

Artinian Gorenstein algebra that is not a complete 

intersection, then A  is of form = /A R I  when 

= [ , , ]R K x y z  and  

= ( , , , , ),     − − + − − −−a b b c a b b b c
I x y x z z x y y z  (1.1) 

where 

1 1, {1, 1} { 1, 1}   − − +   − −max minb b a b c  

and 2 a c . The integers , , ,a b c  and   are 

determined from the structure of ( )Ap P [17, 

Section 5]. 

Our goal is to study the WLP of the graded 

algebra A . Our main results are as follows:  

Theorem. Consider the ideal I  as in (1.1). If 

2 + −a b c , then /R I  has the WLP for any 

1 { 3, 1}  − − + −min a b c b . As a consequence, if 

2 4 + −a b c , then /R I  has the WLP.  

Then, we recover a result in [8, Theorem 

3.7], with a shorter and easier proof.  

Corollary. Let I  be as in (1.1). If one of the 

,a b  and c  is equal to two, then /R I  has the WLP.  

2 Background and preparatory 

results 

 In this section, we fix the notations, and we recall 

the known facts needed later in this work. We fix 

K  as a field of characteristic zero and 

1= [ , , ]nR K x x . Let  

=0

= / = [ ]
D

i

i

A R I A  

be a graded Artinian algebra. 

Definition 2.1. For any graded Artinian 

algebra 
=0

= / = [ ]
D

ii
A R I A , the Hilbert function of 

A  is the function  

: →Ah  

defined by ( ) = [ ]dimKA th t A . As A  is Artinian, 

its Hilbert function is equal to its h -vector that 

one can express as a sequence  

0 1 2 3= (1= , , , , , ),DAh h h h h h  

where = ( ) > 0i Ah h i , and D  is the last index 

with this property. The integer D  is called the 
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socle degree of A . The h -vector Ah  is said to be 

symmetric if =−D i ih h  for every = 0,1, , .
2

 
D

i   

Definition 2.2. [18, Proposition~2.1] A 

graded Artinian algebra A  as above is Gorenstein if 

and only if = 1Dh  and the multiplication map  

[ ] [ ] [ ]− → i D i DA A A K  

is a perfect pairing for all = 0,1, , .
2

 
D

i   

It follows that the h -vector of a graded 

Artinian Gorenstein is symmetric. 

Definition 2.3. A graded Artinian K -algebra 

A  has the weak Lefschetz property, briefly, WLP, if 

there exists 1[ ]L A  such that the map 

1:[ ] [ ] + →i iL A A  has a maximal rank for each i . We 

also say that a homogeneous ideal I  has the WLP if 

/R I  has the WLP.  

We can determine the WLP by considering 

the rank of the multiplication map by a general 

linear form in every degree. However, for a 

standard graded Artinian Gorenstein K -algebra, 

the WLP is determined by considering only the 

multiplication map in one degree.  

Proposition 2.4. [4, Proposition 2.1] Let A  

be a standard graded Artinian Gorenstein K -algebra 

with the socle degree D  and := .
2

 
D

k  Then, we 

have 

1. If D  is odd, A  has the WLP if and only if 

there is an element 1[ ]L A  such that the 

multiplication map 1:[ ] [ ] + →k kL A A  is an 

isomorphism.  

2. If D  is even, A  has the WLP if and only if 

there is an element 1[ ]L A  such that the 

multiplication map 1:[ ] [ ] + →k kL A A  is surjective or 

equivalently the multiplication map 

1:[ ] [ ]− →k kL A A  is injective.  

We close this section by recalling a result of 

Guerrieri.  

Proposition 2.5. [17, Theorem 2.1] Assume 

that 
=0

= [ ]
D

ii
G G  is a standard graded Artinian 

Gorenstein K -algebra with the socle degree D  that 

has the WLP. If 1[ ] G  is a linear element, then the 

quotient ring  

=
(0 ):G

G
A  

is also a standard graded Artinian Gorenstein K -

algebra. Assume that G  and A  have the same 

codimension and set := .
2

 
D

k  Then A  has also the 

WLP, whenever D  is odd; or D  is even and 

1[ ] = [ ]−dim dimK Kk kG G .  

3 The WLP for a class of Artinian 

Gorenstein algebras of 

codimension three 

From now on, we study the WLP of the ideal in 

the following setting.  

Setting 3.1. Let = [ , , ]R K x y z  be the standard 

graded polynomial ring over a field K  of 

characteristic zero and consider the ideal  

= ( , , , , ) ,     − − + − − −− a b b c a b b b c
I x y x z z x y y z R  

where 

1 1, {1, 1} { 1, 1}   − − +   − −max minb b a b c  

and 2. a c   

It is clear that 2 − +a b c . Firstly, we need 

the following result. 

Proposition 3.2. [8, Proposition 3.1] Let 

:=I I  be as in Setting 3.1. Set = / A R I  and 

= /G R a , where := ( , , ) −−a b b c
a x y x z z . Then, one 

has:  
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1. = . :RI a y  Therefore, A  is an Artinian 

Gorenstein algebra of codimension three and its socle 

degree is = 3.+ + − −D a b c   

2. G  is an Artinian complete intersection of 

codimension three, and hence it has the WLP. For all 

2 1  −b   

1

1

1

= = .
(0 ) (0 )






−

−

and
: :G A

AG
A A

y y
 

3. The free resolution of A  is

  

( ) ( )

( ) ( )

0 ( ) 0.( ) ( )

( ) ( )

( ) ( )







 

  

  

− − + −

 

− − + −

 

→ − − − + → → → → →− − + −

 

− − − − +

 

− − + − − + +

R a b R a

R a c R b

R a b c R AR b c R c

R a R a

R b c R b c

 

Next, we study the Hilbert functions of these algebras.

Proposition 3.3. With notations as in 

Proposition 3.2. Set 
3

:=
2

+ + −
 
a b c

k .  

If 1 + +a b c , then ( ) = ( 1).−G GH k H k  

Proof. We first observe that as 1 + +a b c , 

we have 1 0, 0− +  − k a k b  and 0− k c . 

Notice that G  is resolved by the Koszul complex, 

we get  

1
( ) ( 1) = 1

1

− − + 
− − + − − +  

 
.G G

k b c
H k H k b c k  

We now consider the following two cases. 

Case 1. + +a b c  is odd. In this case, one 

has 
3

=
2

+ + −a b c
k  and  

1
1

( ) ( 1) = .2
2

1

− − − 
+ − +  − − +

  
 

G G

a b c
b c a

H k H k  

First, if = 1+ +a b c , then  

( ) ( 1) = 0− −G GH k H k  

and now if 3 + +a b c , then 1 2− − − a b c . It 

follows that  

1 1
( ) ( 1) = = 0,

2 2

+ − + − − −
− − +G G

b c a a b c
H k H k  

which completes the argument whenever 

+ +a b c  is odd. 

Case 2. + +a b c  is even. In this case, one 

has 
4

=
2

+ + −a b c
k  and  

2
2

( ) ( 1) = .2
2

1

− − − 
+ − +  − − +

  
 

G G

a b c
b c a

H k H k  

If = 2+ +a b c , then  

( ) ( 1) = 0− −G GH k H k  

and if 4 + +a b c , then 2 2− − − a b c . It 

follows that  

2 2
( ) ( 1) = = 0,

2 2

+ − + − − −
− − +G G

b c a a b c
H k H k  

which gives the claim for this case. Thus, we 

complete the proof.  
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Proposition 3.4. Let :=I I  be as in Setting 

3.1. Set = / A R I  and 
3

=
2

+ + − −
 
a b c

k . If 

 +a b c , then  

( ) = ( 1),
 

−A AH k H k  

provided 1 1  − − +a b c .  

Proof. Since we have the free resolution of 

A  as in Proposition 3.2(iii), we get  

1 1 1
( ) ( 1) =

1 1 1 

+ − + − +     
− − − −     

     
A A

k k a k b
H k H k

1 1 1

1 1 1

   − + − − + + − − + + +     
− − −     
     

k c k a k b c

 

1 1 1

1 1 1

  − − + + − − + + − − + +     
+ + +     
     

k a b k a c k b c

 

1 1 1

1 1 1

  − − + − − + + − − − + +     
+ + −     
     

k a k b c k a b c
 

with convention = 0
 
 
 

n

m
 if <n m . The condition 

1  − − +a b c  implies that 1 0.− + + k a  

Therefore,  

1 0

1 0

1 0

1 0

1 0

1 0.



 







− + 


− − + 
 − − + + 


− − + + 
 − − + + 

 − − − + + 



k a

k a

k a

k a b

k a c

k a b c

 

On the other hand, we also have that 

0− k b  and 0− k c  since 1  − − +a b c . 

Thus, 

1
( ) ( 1) = 1

1 

 − − + + + 
− − + − − −  

 
A A

k b c
H k H k b c k

1 1
.

1 1

 − − + + − − + +   
+ +   
   

k b c k b c
          (3.1) 

To prove the proposition, we consider the 

following two cases. 

Case 1. + + −a b c  is odd. In this case, 

3
=

2

+ + − −a b c
k . By (3.1), we get that  

( ) ( 1) =

1 1
1

2 2
2

1 1

 

 


− −

− − + − − − + −   
++ − + +    − +

   
   
   

A AH k H k

a b c a b c
b c a

1

2

1




− − − − 
+ +

 
 
 

a b c

 

1 1

= 1 2 2

1 1

 




− − + − − − − −   
+   + − + − + +

   
   
   

a b c a b c

b c a

as 1 0− − + − a b c  under the condition 

1 1.  − − +a b c  Therefore, if = 1 − − +a b c , 

then  

1 1
( ) ( 1) = 1

1 1 

 


− −   
− − + − + − + +   

   
A AH k H k b c a

1 1
= 2

1 1

 
 

− −   
− − + +   

   
= 0.  

If 1  − − −a b c , then 2 + +a b c , and 

hence  

( ) ( 1) =

1 1
1 0

2 2

 

 
 

− −

− − + − − − − −
+ − + − + + + = .

A AH k H k

a b c a b c
b c a

 

Case 2. + + −a b c  is even. In this case, 

1   − −a b c  and 
4

=
2

+ + − −a b c
k . By (3.1), 

we get that  

( ) ( 1) =

2 2
2

2 2
2

1 1

 

 


− −

− − + − − − + −   
++ − + +    − +

      
   

A AH k H k

a b c a b c
b c a

2

2

1




− − − − 
+ +

  
 

a b c
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2

= 2 2

1

2

2

1








− − + − 
 + − + − + +
  
 

− − − − 
+ 

  
 

a b c

b c a

a b c
 

as 2 0− − + − a b c  under the condition 

1 .  − −a b c  Therefore, if = − −a b c , then  

1 1
( ) ( 1) = 2

1 1 

 


− −   
− − + − + − + +   

   
A AH k H k b c a

1 1
= 2 0

1 1

 
 

− −   
− − + + =   

   
.  

If 2  − − −a b c , then 3 + +a b c , and 

hence,  

2
( ) ( 1) = 2

2

2
0

2

 







− − + −
− − + − + − +

− − − −
+ + = .

A A

a b c
H k H k b c a

a b c

 Thus, the proposition is completely proved.  

We now state our main result.  

Theorem 3.5. Let I  be as in Setting 3.1. If 

2 + −a b c , then /R I  has the WLP for any 

1 { 3, 1}  − − + −min a b c b . As a consequence, if 

2 4 + −a b c , then /R I  has the WLP.  

Proof. Notice that the socle degree of 

2− − +a b cA  is odd; hence, by applying Propositions 

2.5 and 3.2 and Lemma 3.4, it is enough to show 

that 1A  has the WLP. We consider the following 

cases: 

Case 1. + +a b c  is even. Then, the socle 

degree of G  is odd. Since G  is an Artinian 

complete intersection algebra of codimension 3, 

G  has the WLP [10, Corollary 2.4]. Thus, it 

follows that 1A  has the WLP by Proposition 

2.5(i). 

Case 2. + +a b c  is odd. If 1− − a b c , 

then 1A  has the WLP by Proposition 2.5 and 

Lemma 3.3. As + +a b c  is odd, we only consider 

the case where = 1.+ −a b c  It remains to show 

that the ideal  

1 1 1 1= ( , , , , )   + − − − + − − −−b c b b c c b b c
I x y x z z x y y z  

has the WLP, where 1 { 1, 1}  − −min b c . Note 

that the socle degree of /R I  is 2 2 5+ −b c , and 

hence = 3.+ −k b c  Let = − −L x y z . By 

Proposition 2.4, it is enough to show that the 

multiplication  

3 2:[ / ] [ / ]+ − + − →b c b cL R I R I  

is surjective, or equivalently 2[ / ( , )] = 0.+ −b cR I L  

We have that  

/ ( , ) [ , ] /R I L K y z J  

where 
1

1 1 1

= (( ) , ( ) , ,

( ) , )

 

 

+ − −

− + − − −

+ − +

+

b c b b c

c b b c

J y z y y z z z

y z y y z
.  

We will prove that 2[ [ , ] / ] = 0+ −b cK y z J , or 

equivalently 2+ − − b c i i
y z J  for all 0 2.  + −i b c  

We do it by the induction on i . 

We first observe that cz J  and 

2 + −c b c ; therefore, for any 0 2  −i b   

2 2= .+ − − − − i b c i i c b i
y z y z z J  

Similarly, as 1 − − b c
y z J , hence for every 

1 2−   + −b i b   

2 1 1 2= . + − − − − − + + − − i b c i b c i b b i
y z y z y z J  

It follows that 2+ − −i b c i
y z  for any 

0 2.  + −i b  Finally, for any 

1 2+ −   + −b i b c , i b ,  

and since ( )  −− + b b
y y z z J ,  

we get that  

2 2 2= = ( )  + − − − + − − − − + − − ++i b c i b i b b c i b i b b c i
y z y y z y z y z  

2

=0

=


 

−
− − + − − + +− 

 
 


b

i j b c i j

j

b
y z J

j
 

by the induction hypothesis.  
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Remark 3.6. Recently, the first author and 

Miró-Roig in [19] gave a general results on the WLP of 

/R I  that recover the main result in Theorem 3.5. 

However, in this paper, we give another proof by using 

the properties of Hilbert function of = /A R I  and 

Proposition 2.5 to reduce to the more simply case where 

=1 .  

Finally, we recover a result in [8, Theorem 

3.7], with a shorter and easier proof.  

Corollary 3.7. Let I  be as in Setting 3.1. If 

one of the ,a b  and c  is equal to two, then /R I  has 

the WLP.  

Proof. Recall that 2 + −b a c  and by 

symmetry of x  and z , without loss of 

generality, we assume that a c . Now, we 

consider the two cases. 

Case 1. = 2b . Since a c , therefore 

2 4 + −a b c . By Theorem 3.5, /R I  has the WLP. 

Case 2. = 2c . Since 2 + −b a c , a b , or 

equivalently 2 + −a b c . Theorem 3.5 implies 

that if 2 2 −a b , then /R I  has the WLP for any 

1 1  −b  and if 2 3  −b a b , then /R I  has 

the WLP for any 1 1.  − +a b  It remains to 

show that /R I  has the WLP for any 

2 1− +   −a b b . 

In this case, one has  

1 2 1= ( , , , , ), − − + − −−a b b a b b b
I x y x z z x y y z  

where 2 1− +   −a b b . Note that the socle 

degree of /R I  is 1+ − −a b . If = 2 − +a b , 

then the socle degree of /R I  is odd, hence by 

applying Propositions 2.5 and 3.2, we can show 

that /R I  has the WLP whenever 

2 1− +   −a b b  and + −a b  is even. In this 

case, 
2

=
2

+ − −a b
k . Set = − −L x y z . From 

Proposition 2.4, it is enough to show that the 

multiplication  

1:[ / ] [ / ] + →k kL R I R I  

is surjective, or equivalently 1[ / ( , )] = 0.+kR I L  We 

have that  

/ ( , ) [ , ] /R I L K y z J  

where 

1 2 1= (( ) , ( ) , ,( ) , ) − − + − −+ − + +a b b a b b b
J y z y y z z z y z y y z .  

We will prove that 1[ [ , ] / ] = 0+kK y z J , or 

equivalently 1+ − k i i
y z J  for all 0 1.  +i k  

Clearly, 1+ − k i i
y z J  for all 2 1,  +i k  as 

2 .z J  Since  −k b ,  

= . − − + k b k b
y z y zy J  

Finally, it is easy to see that . −k a  

Since 1( ) − + −+ a b b
y z y J  and by the Newton 

binomial expansion formula  

1
1 1

=0

1
( ) = , 

− +
− + − − + −− + 

+  
 


a b

a b b a j j

j

a b
y z y y z

j
 

we get  

1
1 1 1

=1

1
= ( ) ,  

− +
− + − + − − + −− + 

+ −  
 


a b

a a b b a j j

j

a b
y y z y y z J

j

which shows that 1+ k
y J . The proof is 

completed.   
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