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Abstract. The Faddeev-Alt-Grassberger-Sandhas equation is the most performance formalism to

describe the (d,p) reactions since it can exactly and simultaneously treat the elastic, inelastic, transfer,

and breakup reactions. In this brief report, we describe the progress and some main difficulties in

treating the Coulomb interaction in the direct elastic scattering of the (d,p) reaction by using the

Faddeev-Alt-Grassberger-Sandhas equation.
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In the history of nuclear physics research, the
(d,p) reaction is one of the most simple and
powerful probes to study the nuclear structure.
Huge experimental data have been obtained by
using this reaction off the stable nuclei in the last
century. Recently, this method continues to be the
key to studying exotic nuclei in the framework of
the inverse kinetic reaction. In principle, we can
simplify the complicated A+1 problem to the 3-
body problem by supposing the target as an inert
core [1]. Because of this assumption, there are
several approximations to solve this 3-body
problem, such as Distorted Wave Born
Adiabatic  Distorted ~Wave
Approximation, Continuum Discretized Coupled-
Channels method, and Faddeev/Alt, Grassberger,

Approximation,

and Sandhas equations (FAGS). Nowadays, the
FAGS is the standard method to benchmark every
3-body model since it is an exact model. However,
because of the Coulomb divergence, the FAGS
calculations are limited at the Ni isotopes [2-9].
The main underlying reason is that the Coulomb
interaction increases in function of Z . We know
very well that the Coulomb divergence appears in
the triangular diagrams describing the d+A and
p+(nA) elastic scattering with the four-ray
vertex. Yet, the noncompact singularity appears
because of the singularity of the off-shell p+A
Coulomb scattering amplitude, which coincides
with the pole singularity of the two-body Green’s
function. We will show below the amplitude of

the direct elastic scattering.

K,k,) = j (2 i (0, >j 2 )gwk“‘”(p)M(pa,p) (1)

where
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elastic scattering term is
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After  some  non-trivial analytical

transformations in using the Nordsieck integral,

we get

Mo,k =472, 2,8 25 M, (kD0 (),
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To calculate the integral of Eq. (17), we use
C = (1 X) (Z4n), 17) one more approximation when supposing
p, =k, . This approximation works near the
C, = o (1-%)° X) (18) forward singularity p', =k',. Using the Cauchy
2'”“’* X integral formula and Nordsieck integral, we get
C2=1+C,, (19)
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where 1i= 0+t (29)
A =1+iny, (26) C, = (C2k, -k ) + 1 (30)
k, =C3k, @7) ¢, =CHE-(K. +ig)? 31)
2=Cjx’ (28) =C
X = =Cp (32)
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K, partial waves
M. (K, k)= Z(2I+1)P(Z)MC,(ka, k.), Z =cos(d) =Kk,

and the partial-wave amplitudes M, are determined by
: 1 .
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where To test the formalism, we perform the
C, = CH2 +k? —2Ck K'Z + 7 (43) calculation for the deuteron elastic scattering off
Pb ® at 9 MeV. Unfortunately, the obtained
C, =CJkZ— (k. +iy)’ (44) results (Fig. 1) show that the Coulomb divergence
CH 1K 4 4 is still very strong even though we already
+k*+
6 = W =¢ (45) subtracted the first-order Born term as in Ref. [10].
3a

and Q™A (£) is the

Function of the second kind, which could be

Associated Legendre

expressed in terms of the hypergeometric function
,R(ab;c;z).

sx10 718

This is still a very hard barrier to overcome. In the
near future, we propose to use the screening and
renormalization method for the higher order of
the Coulomb term after the subtraction of the first

order.
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Fig. 1. (Color line) The amplitude of elastic scattering of deuteron off Pb *® at9 MeV

DOI: 10.26459/hueunijns.v131i1D.6381

119



Hoang Dai Nghia and T. V. Nhan Hao

Funding statement

This
Foundation for
Development (NAFOSTED) of Vietham under
Grant No. 103.04-2019.371. It was also partially
supported by Hue University in the Core
Grant  No.

work was funded by the National

Science and Technology

Research ~ Program  under

NCM.DHH.2018.09.

H.D.N. was funded by Vingroup JSC and
PhD Scholarship
Programme of Vingroup Innovation Foundation
(VINIF), Institute of Big Data,
VINIF.2021.ThS.32.

supported by the Master,

code

References

1. Nunes FM, Deltuva A. Adiabatic approximation
versus exact Faddeev method for ($d,p$) and
($p,ds) reactions.
2011;84(3):034607.

Physical Review C.

2. Alt EO, Grassberger P, Sandhas W. Reduction of
the three-particle collision problem to multi-
channel two-particle Lippmann-Schwinger
equations. Nuclear Physics B. 1967;2(2):167-80.

3. Alt EO, Blokhintsev LD, Mukhamedzhanov AM,
Sattarov Al
stripping processes off $*{12}\mathrm{C}$ as a

Deuteron elastic scattering and

120

10.

three-body  problem. Review C.

2007;75(5):054003.

Physical

Alt EO, Kadyrov AS, Mukhamedzhanov AM.
Approximate triangle amplitude for three-body
charge exchange processes. Physical Review A.
1996,53(4):2438-42.

Alt EO, Kadyrov AS, Mukhamedzhanov AM.
Triangle amplitude with off-shell Coulomb T
matrix for exchange reactions in atomic and nuclear
physics. Physical Review A. 1996;54(5):4091-105.

Deltuva A. Spin observables in three-body direct

nuclear  reactions. = Nuclear = Physics  A.

2009;821(1):72-9.

Alt EO, Mukhamedzhanov AM, Nishonov MM,
Sattarov Al Proton-deuteron elastic scattering from
25 to 227 MeV.
2002;65(6):064613.

Physical Review C.

Nhan Hao TV, Nhu Le N, Thao PH. Triangular
exchange diagram within the full off-shell coulomb
Hue
University Journal of Science: Natural Science.
2018;127(1A):33-42.

T-matrix in deuteron induced reactions.

Nhan Hao TV, Pham VNT, Nguyen HK. Spin
observables of (d,p) reactions off $*{12}$C within
the Paris potential. Hue University Journal of
Science: Natural Science. 2019;128(1D):39-42.

Mukhamedzhanov AM, Eremenko V, Sattarov Al
equations in the Alt-
Grassberger-Sandhas form for deuteron stripping
with explicit inclusion of target excitations and

Generalized Faddeev

Coulomb interaction. Review C.

2012;86(3):034001.

Physical



