TỔNG HỢP PHỨC TITANIUM PEROXIDE VÀ KHẢO SÁT HOẠT TÍNH XÚC TÁC CỦA HỆ TỉO2/g-C3N4

Đặng Thị Ngọc Hoa^{1,2*}, Nguyễn Đức Hồng³

¹ Trường Đại học Khoa học, Đại học Huế, 77 Nguyễn Huệ, Huế, Việt Nam ² Trường Đại học Y dược, Đại học Huế, 6 Ngô Quyền, Huế, Việt Nam ³ Trường Đại học Nông lâm, Đại học Huế, 102 Phùng Hưng, Huế, Việt Nam

* Tác giả liên hệ Đặng Thị Ngọc Hoa <dtnhoa@hueuni.edu.vn> (Ngày nhận bài: 01-7-2021; Ngày chấp nhận đăng: 6-10-2021)

Tóm tắt. Bài báo này trình bày kết quả tổng hợp phức titanium peroxide và hoạt tính quang xúc tác của hệ TiO₂/*g*-C₃N₄. Vật liệu được đặc trưng bằng phương pháp quang phổ phản xạ khuếch tán tử ngoại khả kiến, nhiễu xạ tia X, hiển vi điện tử quét, hiển vi điện tử truyền qua và phổ hồng ngoại. Phức titanium peroxide có hàm lượng TiO₂ cao và hệ TiO₂/*g*-C₃N₄ với tỷ lệ 1:1 (kl) có hoạt tính xúc tác quang tốt. Đây là vật liệu tiềm năng cho xử lý nước thải ô nhiễm.

Từ khóa: phức titanium peroxide, g-C₃N₄, TiO₂, TiO₂/g-C₃N₄, xử lý nước thải

Synthesis of soluble titanium peroxide complex and catalytic performance with TiO₂/g-C₃N₄ system

Dang Thi Ngoc Hoa^{1,2*}, Nguyen Duc Hong³

¹University of Sciences, Hue University, 77 Nguyen Hue St., Hue, Vietnam ²University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen St., Hue, Vietnam ³University of Agriculture and Forestry, Hue University, 102 Phung Hung St., Hue, Vietnam

* Correspondence to Dang Thi Ngoc Hoa <dtnhoa@hueuni.edu.vn> (Received: 01 July 2021; Accepted: 06 October 2021)

Abstract. This paper presents the synthesis of the titanium peroxide complex and the photocatalytic activity of the TiO₂/*g*-C₃N₄ system. The prepared materials were characterized by using UV-Visible Diffuse Reflectance Spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy. The titanium peroxide complex with high TiO₂ content and the TiO₂/*g*-C₃N₄ system of 1:1 (w/w) has good catalytic activity. This material can be used in polluted-wastewater treatment.

Keywords: titanium peroxide complex, g-C₃N₄, TiO₂, TiO₂/g-C₃N₄, polluted-wastewater treatment

1 Mở đầu

Một trong những nguy cơ đe dọa nghiêm trọng đến sự tồn tại của sinh vật trên trái đất là ô nhiễm môi trường. Ô nhiễm môi trường là tổng số các chất ô nhiễm tồn tại trong nước, không khí và trên đất. Các chất ô nhiễm tác động nguy hại đối với sức khỏe của con người và nhiều loài sinh vật trên Trái đất [1, 2]. Trong số các chất gây ô nhiễm, các chất gây ô nhiễm vật lý, hóa học và sinh học là những nguồn ô nhiễm chính [1]. Trong số các chất ô nhiễm hóa học, thuốc nhuộm tổng hợp và các hợp chất được phẩm là nguyên nhân chính gây ra ô nhiễm hữu co [3-8]. Hiện nay, các hợp chất hữu co này được sử dụng với một lượng rất lớn và gây ra nhiều mối nguy hiểm cho sức khỏe khi tiêu thụ trực tiếp hoặc gián tiếp.

Có nhiều phương pháp khác nhau để phân hủy các chất ô nhiễm hữu cơ như vật lý, hóa học, sinh học [5]. Trong đó, phân hủy quang xúc tác là một quá trình hóa lý thu hút nhiều sự chú ý do khả năng xử lý hiệu quả các chất ô nhiễm hữu cơ tồn tại trong nước hoặc trong môi trường lỏng. Phương pháp này không tạo ra các sản phẩm độc hại và nó sử dụng năng lượng tái tạo, như ánh sáng mặt trời, để thực hiện phản ứng. Chi phí thấp và hiệu quả cao của phương pháp quang xúc tác đã làm cho TiO₂ trở nên hấp dẫn hơn. Phương pháp này do Fujishima và Honda phát triển vào năm 1972 và ứng dụng để tách nước trên điện cực TiO₂ khi chiếu xạ UV [6]. TiO₂ là chất không độc hại, rẻ và dồi dào.

Tuy nhiên, TiO² có một số hạn chế như năng lượng vùng cấm rộng nên chỉ thể hiện tính quang xúc tác khi được kích thích bằng bức xạ tử ngoại, mà phần này chiếm rất nhỏ (<5%) năng lượng bức xạ mặt trời. Ngoài ra, cặp electron – lỗ trống quang sinh phát sinh trong TiO² dễ tái tổ hợp. Vì vậy, để vật liệu TiO² có hoạt tính quang xúc tác trong vùng ánh sáng khả kiến, việc pha tạp kim loại hoặc phi kim thường tạo ra vùng chuyển tiếp giữa vùng hóa trị và vùng dẫn [7]. g-C₃N₄ là một loại vật liệu thuộc nhóm C₃N₄ với cấu trúc tương tự graphite [8]. Vật liệu này có năng lượng vùng cấm nhỏ, có khả năng dẫn điện và độ bền cơ học cao nên là chất làm nền lý tưởng để tạo ra các composite có khả năng ứng dụng trong lĩnh vực xúc tác [9].

Mặt khác, các tiền chất của TiO₂ như TiCl₄, alkoxide titanium rất dễ bị thủy phân trong môi trường ẩm gây ra kết tủa cục bộ [10] nên rất khó điều khiển hàm lượng đưa vào trong các composite chứa TiO₂. Một trong những hướng khắc phục đó là tạo ra các phức titanium peroxide hòa tan trong nước. Nghiên cứu này trình bày kết quả tổng hợp phức titanium peroxide và hoạt tính quang xúc tác của hệ TiO₂/g-C₃N₄.

2 Phương pháp

2.1 Hóa chất và thiết bị

Các hóa chất sử dụng trong nghiên cứu bao gồm bột titanium dioxide (TiO₂) (Merk 99%, Đức), sodium hydroxide (NaOH), hydrochloric acid (HCl), hydroperoxide 30% (H₂O₂) (Guang zhou, Trung Quốc), xanh methylene (C₁₆H₁₈ClN₃S) và melamine (C₃H₆N₆) (Merck KGaA, Đức).

Các thiết bị được sử dụng trong nghiên cứu bao gồm máy siêu âm, tủ sấy, lò nung, cân phân tích Precisa XB 220 (Thụy sĩ), máy khuấy từ, máy ly tâm, đầu dò siêu âm công suất kiểu hội tụ (28 kHz, 150 W), đèn Osram (160 W, 240 V). Mẫu vật liệu nghiên cứu được đặc trưng bằng XRD, ghi trên máy D8 Advance Eco (Bruker, Đức), ống phát tia X bằng Cu với bước sóng λ = 1,5406 Å, điện áp 40 kV, dòng 25 mA, công suất 1000 W, nhiệt độ phòng. Phổ hồng ngoại (IR) được đo trên máy Nicolet IS 10. Phổ UV-Vis-DR được đo trên máy JASCO-V670 với bước sóng từ 200 đến 800 nm. Ảnh SEM được ghi trên máy SEM JMS-5300LV (Nhật) ở 10 kV. Ánh TEM được ghi trên máy JEOL JEM - 2100F ở 80 KV. Phổ UV-Vis được đo trên máy UViline 9400 và máy Analytik Jena AG - SPECORD 50 UV-VIS spectrophotometer với cuvet thạch anh.

2.2 Tổng hợp vật liệu

Tổng họp phức titanium peroxide bằng phương pháp thủy nhiệt – siêu âm: Phân tán 0,25 g bột TiO₂ thương mại vào 12,5 mL dung dịch NaOH 10 M. Dung dịch này tiếp tục được xử lý bằng siêu âm trong thời gian 30 phút để bột TiO₂ dễ phân tán. Sau đó, chuyển toàn bộ dung dịch vào bình Teflon rồi thủy nhiệt ở 130 °C trong 10 giờ. Sau khi làm mát ở nhiệt độ phòng, đem ly tâm và rửa bằng nước cất và dung dịch HCl 0,1 M. Sản phẩm sau đó được sấy khô ở 80 °C trong hai giờ. Sau đó, sản phẩm được hòa tan bằng dung dịch H₂O₂ ở 90 °C và khuấy trong một giờ. Dung dịch thu được có màu vàng đồng nhất (có thể ổn định dung dịch ở nhiệt độ thấp hon 10 °C). Sản phẩm thu được là dung dịch phức titanium peroxide.

Thể tích H₂O₂ và nồng độ dung dịch NaOH sử dụng trong nghiên cứu là 15, 20, 25, 30, 35 và 40 mL và 5, 10, 15 và 20 M. Hàm lượng TiO₂ trong dung dịch phức được xác định bằng phương pháp phân tích khối lượng.

Tổng hợp g-C₃N₄ [11]: Cân 5 g bột melamine và nghiền mịn bằng cối mã não. Sau đó, cho mẫu vào cốc sứ và nung ở 500 °C trong bốn giờ. Để nguội đến nhiệt độ phòng, nghiền mịn thu được sản phẩm.

Tổng hợp TiO2/g-C3N4: Phân tán dung dịch phức titanium peroxide sau khi tối ưu hóa và bột melamine theo tỉ lệ 1:1 về khối lượng dưới sự hỗ trợ của siêu âm, sau đó nung ở 500 °C trong bốn giờ. Để nguội đến nhiệt độ phòng, nghiền mịn thu được sản phẩm.

2.3 Khảo sát hoạt tính xúc tác quang

Hệ phản ứng gồm máy khuấy từ, bình tam giác, quạt thông gió và đèn dây tóc được đặt trong thùng gỗ ($20 \times 40 \times 40$ cm), khoét cửa ở phía trên. Khoảng cách từ đèn đến bình đựng dung dịch phản ứng là 7 cm. Nhiệt độ phản ứng được giữ ổn định ở 25 °C nhờ quạt thông gió gắn ở góc bên của thùng gỗ.

Hoạt tính xúc tác quang được đánh giá dựa trên khả năng phân hủy xanh methylene (MB) dưới tác dụng của đèn dây tóc. Cân 0,02 g TiO₂/g-C₃N₄ cho vào bình tam giác chứa 100 mL dung dịch MB 10 ppm; đậy kín bình, khuấy từ trong 40 phút trong bóng tối để quá trình hấp phụ đạt cân bằng (5 mL mẫu được lấy ra, ly tâm, lọc bỏ chất xúc tác, nồng độ MB còn lại trong dung dịch được xác định bằng quang phổ hấp thụ UV-Vis, $\lambda_{max} = 670$ nm). Sau đó chiếu sáng và 5 mL dung dịch mẫu được rút ra định kỳ tại các khoảng thời gian được thiết lập, sau đó ly tâm, lọc bỏ chất xúc tác và đo độ hấp thụ như trên.

3 Kết quả và thảo luận

3.1 Tổng hợp phức titanium peroxide

Dung dịch phức titanium peroxide tổng hợp với các thể tích H2O2 khác nhau được trình bày ở Hình 1.

Khi thể tích H₂O₂ tăng, màu vàng của dung dịch đậm dần và hàm lượng TiO₂ tăng dần. Ở thể tích H₂O₂ bằng 35 mL thì hàm lượng TiO₂ đạt cực đại 2,02 mg·L⁻¹, sau đó giảm khi tiếp tục tăng thể tích H₂O₂ (Bảng 1). Chính vì vậy, thể tích 35 mL H₂O₂ được sử dụng cho các thí nghiệm tiếp theo.

Hình 1. Các dung dịch phức titanium peroxide theo thể tích H2O2

Bảng 1. Hàm lượng TiO2 trong các dung dịch phức
titanium peroxide ứng với thể tích H2O2 khác nhau

Thể tích H2O2 hòa tan (mL)	Hàm lượng TiO₂ (mg·mL⁻¹)
15	0,85
20	1,46
25	1,51
30	1,96
35	2,02
40	1,78

Kết quả nghiên cứu ảnh hưởng của nồng độ dung dịch NaOH đến khả năng tạo phức TiO² hòa tan được trình bày ở Hình 2.

Độ hòa tan của dung dịch tăng theo nồng độ dung dịch NaO và hàm lượng TiO₂ tăng dần (Bảng 2). Tại nồng độ 20 M, dung dịch có màu vàng đậm nhất và trong suốt, không còn hiện tượng lắng cặn như các nồng độ 5, 10 và 15 M (Hình 2) và các thí nghiệm khảo sát thể tích H₂O₂ nói trên. Chính vì vậy, nồng độ dung dịch NaOH 20 M được sử dụng cho các thí nghiệm tiếp theo.

Hình 2. Các dung dịch phức titanium peroxide theo nồng độ dung dịch NaOH

3.2 Tổng hợp hệ TiO₂/g-C₃N₄

Hình 3 trình bày giản đồ XRD của TiO₂, g-C₃N₄ và TiO₂/g-C₃N₄.

Hình 3a cho thấy peak thứ nhất có cường độ mạnh ở 25° tương ứng với mặt (101) và có các peak tiếp theo ở 37, 48, 53, 55, 62, 68, 70 và 75° tương ứng với các mặt đặc trưng của TiO₂ dạng anatase (JCPDS No. 21-1272). Hình 3b cho thấy hai peak ở 13 và 27° tương ứng với mặt (100) và (002) của *g*-C₃N₄ (JCPDS No.87-1526). Hình 3c cho thấy một peak ở 27° của *g*-C₃N₄ và các peak đặc trưng có cường độ mạnh của TiO₂ [12, 13]. Như vậy, kết quả giản đồ nhiễu xạ tia X (XRD) cho thấy các peak nhiễu xạ xuất hiện rõ, đỉnh nhiễu xạ sắc nét và cường độ nhiễu xạ khá cao, chứng tỏ vật liệu TiO₂/*g*-C₃N₄ có độ kết tinh cao.

Nồng độ dung dịch NaOH (M)	Hàm lượng TiO₂ (mg·mL⁻¹)	
5	0,75	
10	2,02	
15	2,83	
20	4,62	

Bảng 2. Hàm lượng TiO₂ ứng với nồng đô dung

dich NaOH khác nhau

Hình 3. Giản đồ XRD của a) TiO₂ b) g-C₃N₄ và c) TiO₂/g-C₃N₄

Hình 4 trình bày phổ hồng ngoại (IR) của TiO₂, *g*-C₃N₄ và TiO₂/*g*-C₃N₄. Trên phổ IR của TiO₂/*g*-C₃N₄ xuất hiện các peak có số sóng trong vùng 1116–1698 cm⁻¹ và 3000–3500 cm⁻¹, minh chứng sự có mặt của *g*-C₃N₄ trong vật liệu. Bên cạnh đó, peak tại số sóng 486 cm⁻¹ là tín hiệu của liên kết Ti-O-Ti [14]. Như vậy, kết quả phổ IR đã chứng minh được sự có mặt của TiO₂ và *g*-C₃N₄ trong composite TiO₂/*g*-C₃N₄. Hình thái của TiO₂ và TiO₂/*g*-C₃N₄ được trình bày trên Hình 5. Kết quả cho thấy sự cùng tồn tại của các hạt nano TiO₂ ở dạng cầu đường kính khoảng 10–20 nm và phân tán trên các tấm nano *g*-C₃N₄.

Hình 4. Phổ IR của TiO₂, g-C₃N₄ và TiO₂/g-C₃N₄

Hình 5. a) Ảnh SEM của TiO2 và b) Ảnh TEM của TiO2/g-C3N4

Để đặc trưng cho khả năng hấp thụ ánh sáng ở vùng khả kiến, chúng tôi sử dụng phổ khuếch tánphản xạ UV-Vis (Hình 6).

Hình 6. a) Phổ khuếch tán phản xạ UV-Vis và b) năng lượng vùng cấm tính theo phương trình Tauc của *g*-C₃N₄, TiO₂ và TiO₂/*g*-C₃N₄

Có thể thấy peak cực đại của TiO² nằm trong vùng ánh sáng tử ngoại, và so với TiO², vùng hấp thụ của composite TiO²/g-C₃N₄ chuyển dịch về vùng của ánh sáng đỏ do sự ghép đôi của TiO₂ với g-C₃N₄. Điều này cho thấy việc đưa g-C₃N₄ vào TiO₂ góp phần tăng cường sự hấp thụ ánh sáng khả kiến

của TiO₂/*g*-C₃N₄ (Hình 6a). Năng lượng vùng cấm tính theo phương trình Tauc của TiO₂, *g*-C₃N₄ và TiO₂/*g*-C₃N₄ lần lượt là 3,1, 2,6 và 2,7 eV (Hình 6b). TiO₂ với năng lượng vùng cấm 3,1 eV tương đương bước sóng 396 nm thuộc vùng tử ngoại. *g*-C₃N₄ có năng lượng vùng cấm thấp (2,6 eV) nên khả năng tái kết hợp cặp electron – lỗ trống quang sinh cao. Vì vậy, sự kết hợp của *g*-C₃N₄ với TiO₂ (có E_g = 2,7 eV tương đương bước sóng 458 nm) sẽ tạo điều kiện thuận lợi cho sự kích thích electron từ vùng hóa trị lên vùng dẫn làm cho khả năng xúc tác quang tăng lên so với vật liệu TiO₂.

3.3 Hoạt tính xúc tác quang

Kết quả khảo sát ảnh hưởng của thời gian đến sự mất màu của vật liệu TiO_2/g -C₃N₄ dưới tác dụng của đèn dây tóc được trình bày trên Hình 7.

Trong bóng tối, TiO₂/g-C₃N₄ có khả năng hấp phụ (65%) cao hơn so với các hệ thành phần (41 và 37% tương ứng với TiO₂ và g-C₃N₄). Sau khi chiếu sáng 100 phút với TiO₂/g-C₃N₄, dung dịch mất màu hoàn toàn (gần 100%), còn khi chiếu sáng với TiO₂ và g-C₃N₄ thì dung dịch vẫn còn màu (80% và 56%). Điều này chứng tỏ vật liệu tổ hợp TiO₂/g-C₃N₄ có khả năng hấp phụ và xúc tác quang hóa tốt, cao hơn so với các hệ thành phần g-C₃N₄ và TiO₂.

Hình 7. Ảnh hưởng của thời gian đến sự phân hủy màu của xúc tác TiO₂/g-C₃N₄ (Điều kiện: V = 100 mL; C_{0(MB)} = 10 ppm; m_{xúc tác} = 0,02 g; thời gian chiếu sáng: 100 phút, nhiệt độ phòng)

Động học quang xúc tác của sự phân hủy MB trên hệ Ti O_2/g -C₃N₄ trong bóng tối và khi chiếu sáng được trình bày trên Hình 8.

Kết quả phân hủy MB với TiO₂/g-C₃N₄ ở Hình 8 cho thấy ở hầu hết các nồng độ khảo sát, giai đoạn hấp phụ đều đạt bão hòa sau 20 đến 40 phút. Khi chiếu ánh sáng đến 100 phút thì nồng độ dung dịch MB giảm xuống còn lại 3,9, 7,0, 8,7 và 10,5 ppm ứng với các nồng độ ban đầu 15, 20, 25 và 30 ppm. Như vậy, TiO₂/g-C₃N₄ có hoạt tính xúc tác quang hóa dưới tác dụng của ánh sáng khả kiến.

Hình 8. Động học quang xúc tác của sự phân hủy MB trên hệ TiO₂/*g*-C₃N₄ trong bóng tối và khi chiếu sáng (Điều kiện: V = 100 mL; $C_{0(MB)} = 15\div30$ ppm; $m_{xúc tác} = 0,02$ g; thời gian chiếu sáng: 100 phút, nhiệt độ phòng)

Hình 9. Phản ứng xúc tác quang của sự phân hủy MB trên hệ TiO₂/g-C₃N₄ với nồng độ đầu khác nhau (Điều kiện: V = 100 mL; $C_{0(MB)} = 15 \div 30$ ppm; $m_{xúc tác} = 0,02$ g; thời gian chiếu sáng: 120 phút, nhiệt độ phòng)

Co (ppm)	k (min-1)	R^2	p
15	0,0080	0,895	< 0,001
20	0,0009	0,932	< 0,001
25	0,0006	0,976	< 0,001
30	0,0002	0,947	< 0,001

Bảng 3. Hằng số tốc độ ở các giá trị nồng độ đầu khác nhau của MB

Các đường thẳng tương quan giữa $\ln(C_{0t}/C)$ và thời gian t (Hình 9) có hệ số xác định R^2 cao (0,895–0,976) và phân tích hồi quy tuyến tính cho thấy sự tương quan tuyến tính này được chấp nhận về mặt thống kê (p < 0,05) (Bảng 3). Như vậy, phản ứng phân hủy quang hóa MB tuân theo mô hình động học Langmuir – Hinshelwood bậc nhất.

$$\ln\!\left(\frac{C_{ot}}{C}\right) = k_{app}t$$

trong đó k_{app} (= $k_r \times K_L$) là hằng số tốc độ biểu kiến bậc nhất (min⁻¹); k_r là hằng số tốc độ phản ứng; K_L là hằng số cân bằng hấp phụ; C_{0t} là nồng độ đầu của MB sau cân bằng hấp phụ và C là nồng độ của MB ở thời điểm t. Hằng số tốc độ k_{app} giảm theo chiều tăng nồng độ đầu MB. Sự giảm này có thể liên quan đến sự hình thành sản phẩm trung gian trong suốt quá trình phân hủy quang hóa, dẫn đến một lượng lớn các sản phẩm trung gian này bị hấp phụ lên bề mặt chất xúc tác làm giảm khả năng phân hủy quang hóa MB dẫn đến ảnh hưởng đến tốc độ của phản ứng.

Kết quả thử hoạt tính xúc tác quang hóa dưới tác dụng của ánh sáng mặt trời của hệ TiO₂/g-C₃N₄ được trình bày trên Hình 10.

Kết quả cho thấy tất cả các mẫu đều có hoạt tính xúc tác quang hóa, nhưng vật liệu nung ở 500 °C có hoạt tính quang xúc tác mạnh nhất. Chỉ sau 40 phút chiếu sáng, dung dịch MB mất màu hoàn toàn trong khi các mẫu còn lại cần 60 phút mới mất màu hoàn toàn.

Hình 10. Thử hoạt tính quang xúc tác dưới ánh sáng mặt tròi các mẫu TiO₂/g-C₃N₄ nung các nhiệt độ khác nhau (Điều kiện: *V* = 50 mL; *C*_{0(MB)} = 10 ppm; *m*_{xúc tác} = 0,01 g; thời gian chiếu sáng: 40 và 60 phút)

4 Kết luận

Đã nghiên cứu tổng họp đưọc phức titanium peroxide bằng phương pháp thủy nhiệt – siêu âm, đã tổng họp hệ TiO₂/g-C₃N₄ bằng phương pháp trộn cơ học có sự hỗ trợ của sóng siêu âm. Hiệu suất phân hủy xanh methylene của hệ TiO₂/g-C₃N₄ đạt gần 100% ở điều kiện chiếu sáng bằng đèn sợi đốt trong 100 phút và dưới ánh sáng mặt trời chỉ trong 40 phút. Sự phân hủy quang xúc tác tuân theo mô hình động học Langmuir – Hinshelwood bậc nhất với hệ số xác định cao (R^2 = 0,895÷0,976).

Thông tin tài trợ

Nghiên cứu được thực hiện dưới sự tài trợ của đề tài Khoa học và công nghệ cấp Đại học Huế, mã số DHH 2021-04-151.

Tài liệu tham khảo

- 1. Mohai P, Bryant BI. Environmental racism: Reviewing the evidence. Paul Mohai and Bunyan Bryant; 1992.
- 2. Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 2009;157(11):2893-902.
- Dietz AC, Schnoor JL. Advances in phytoremediation. Environ Health Perspect. 2001;109(suppl 1):163-8.
- Manahan SE. Fundamentals of environmental and toxicological chemistry: sustainable science. CRC press; 2013.
- Mishra D, Srivastava M. Low-dimensional nanomaterials for the photocatalytic degradation of organic pollutants. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants. Elsevier; 2020. p. 15-38.
- Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238(5358):37-8
- Li K, Gao S, WangQ, Xu H, Wang Z, Huang B, et al. In-situ-reduced synthesis of Ti³⁺ self-doped TiO₂/g-C₃N₄ heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Interfaces. 2015;7(17):9023-30.

- Teter DM, Hemley RJ. Low-compressibility carbon nitrides. Science (80-). 1996;271(5245):53-5.
- 9. Wen J, Xie J, Chen X, Li X. A review on g-C₃N₄-based photocatalysts. Appl Surf Sci. 2017;391:72-123.
- Bavykin D V, Parmon VN, Lapkin AA, Walsh FC. The effect of hydrothermal conditions on the mesoporous structure of TiO₂ nanotubes. J Mater Chem. 2004;14(22):3370-7.
- 11. Jin Z, Zhang Q, Yuan S, Ohno T. Synthesis high specific surface area nanotube g-C₃N₄ with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Adv. 2015;5(6):4026-9.
- 12. Wei K, Li K, Yan L, Luo S, Guo H, Dai Y, et al. Onestep fabrication of g-C₃N₄ nanosheets/TiO₂ hollow microspheres heterojunctions with atomic level hybridization and their application in the multicomponent synergistic photocatalytic systems. Appl Catal B Environ. 2018;222:88-98.
- Sheng Y, Wei Z, Miao H, Yao W, Li H, Zhu Y. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C₃N₄/TiO₂ free-separation photocatalyst. Chem Eng J. 2019;370:287-94.
- Lu N, Wang C, Sun B, Gao Z, Su Y. Fabrication of TiO₂-doped single layer graphitic-C₃N₄ and its visible-light photocatalytic activity. Sep Purif Technol. 2017;186:226-32.