
Hue University Journal of Science: Natural Science 
Vol. 132, No. 1D, 87–97, 2023 

pISSN 1859-1388 
eISSN 2615-9678 

 

DOI: 10.26459/hueunijns.v132i1D.7111 87 

 

 

Jost function formalism with complex potential  

K. Mizuyama1,2, T. Dieu Thuy3, D. Quang Tam3,4 

1 Institute of Research and Development, Duy Tan University, Da Nang, VietNam  
2 Faculty of Natural Sciences, Duy Tan University, Da Nang, VietNam  

3 Faculty of Physics, University of Education, Hue University, 34 Le Loi Street, Hue, Vietnam  
4 Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue, Vietnam  

* Correspondence to K. Mizuyama <mizuyamakazuhito@dtu.edu.vn> 

(Received: 15 February 2023; Revised: 22 May 2023; Accepted: 22 May 2023) 

Abstract. The Jost function formalism is extended with use of the complex potential in this paper. We 

derive the Jost function by taking into account the dual state which is defined by the complex conjugate 

the complex Hamiltonian. By using the unitarity of the S-matrix which is defined by the Jost function, 

the optical theorem with the complex potential is also derived. The role of the imaginary part of the 

complex potential for both the bound states and the scattering states is figured out. The numerical 

calculation is performed by using the complex Woods-Saxon potential, and some numerical results are 

demonstrated to confirmed the properties of extended Jost function formalism.  
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1 Introduction 

The optical model has been used to analyze and 

successfully reproduced the experimental cross 

section of the nucleon-nucleus (NA) scattering at 

higher energy region [1]. As is well known, the 

optical potential is given by the complex potential, 

and the imaginary part of the optical potential is 

important for the quantitative reproduction of the 

experimental data because it has the absorptive 

effect to the incident nucleon flux on the NA 

scattering as written in many papers and 

textbooks. According to the Feshbach projection 

theory [2], the origin of the complex optical 

potential is due to the channels coupling at the 

intermediate states of the NA-scattering. 

Nevertheless, the optical potential parameters are 

given phenomenological so as to reproduce the 

experimental data [3, 4]. 

 Recently, the microscopic optical 

potential (MOP) based on the particle-vibration 

coupling (PVC) method has been carried out. The 

elastic and inelastic cross section of the NA-

scattering have successfully reproduced the 

experimental data without any fitting parameters 

because the MOP has been calculated by using the 

effective nucleon-nucleon interaction self-

consistently [5, 6, 7, 8]. In the PVC method, the 

MOP is represented by the Hartree-Fock mean 

field potential and self-energy function. The self-

energy function is given by the complex non-local 

function which represents the coupling between 

the incoming nucleon and excitation of that target 

nucleus. The excitation of the target is calculated by 

the self-consistent random phase approximation 

(RPA). The elastic, inelastic and nucleon capture 

channels are automatically taken into account in 

the self-energy function as the intermediate states 

of the NA-scattering. The description of MOP by 

PVC is consistent with the Feshbach projection 

theory. 



K. Mizuyama et al. 

 

88  

 

The contribution of the optical potential can 

be interpreted as the mean contribution from the 

coupling of many channels at higher incident 

incident energy of NA scattering. At low energy, 

the basic shape of the cross section is characterized 

by the individual contribution of shape resonances. 

As expected from the R-matrix theory [9, 10, 11] 

and results and analysis by continuum PVC [5], the 

channel coupling effect will play crucial role for the 

production of the sharp peaks of resonances. The 

absorptive effect of optical potential becomes 

smaller. This is the fact which can be expected from 

the absolute value of the reaction cross section 

(which is defined by the difference of the total and 

elastic cross section). 

The important role of the imaginary part of 

the complex potential is not only for the nuclear 

reaction. The role of the complex potential for the 

nuclear structure has been discussed. In order to 

analyze the PVC effect on the single particle levels, 

the experimentally determined spectroscopic 

factor has been analyzed by comparing with the 

theoretically calculated level density [12]. It was 

confirmed that the experimental spectroscopic 

factors are reasonably well reproduced in both 

senses; the position of the centroid energies and the 

fragmentation. This is another aspect of the 

complex self-energy function (complex optical 

potential)’s effect. 

The Jost function is one of the useful tool to 

investigate the role of the potential for bound 

states, resonances and scattering states, because it 

is possible to calculate all of those states as the 

poles of the S-matrix on the complex 

energy/momentum plane directly from the 

potential. Recently, we extended the Jost function 

formalism based on the Hartree-Fock-Bogoliubov 

(HFB) formalism in order to take into account the 

pairing [13]. This extension of the Jost function is a 

kind of the extension to the multi-channel system 

because the HFB is also a kind of two channel 

system in a broad sense. However, the potential in 

the Jost function framework is still supposed to be 

real. Therefore, we shall extend the Jost function 

framework with the complex potential in this 

paper. 

2 Jost function with the complex 

potential 

When the potential is given by the complex, the 

hermiticity of the Hamiltonian is broken. As is 

well-known, the dual Hilbert space which is 

defined by the complex conjugate of the 

Hamiltonian 𝐻∗  exists if the hermiticity of the 

Hamiltonian is broken. In order to derive the Jost 

function with the complex potential, it is necessary 

to take into account the dual space. 

2.1 Derivation of the Jost function 

In this section, we shall derive the Jost function 

with the complex potential. 

When the Schrodinger equation is given by  

[−
ℏ2

2𝑚
(

𝜕2

𝜕𝑟2
−

𝑙(𝑙 + 1)

𝑟2
) + 𝑈𝑙𝑗(𝑟)] 𝜑𝑙𝑗(𝑟; 𝑘) 

= 𝜖(𝑘)𝜑𝑙𝑗(𝑟; 𝑘), (1) 

with the complex potential 𝑈𝑙𝑗(𝑟), the equation for 

the dual state is given by  

[−
ℏ2

2𝑚
(

𝜕2

𝜕𝑟2
−

𝑙(𝑙 + 1)

𝑟2
) + 𝑈𝑙𝑗

∗ (𝑟)] �̃�𝑙𝑗(𝑟; 𝑘) 

= 𝜖(𝑘)�̃�𝑙𝑗(𝑟; 𝑘), (2) 

where  

𝜖(𝑘) =
ℏ2𝑘2

2𝑚
. (3) 
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By using the Green’s theorem, we can obtain 

the regular and irregular solutions, 𝜑𝑙𝑗
(𝑟)

(𝑟; 𝑘) and 

𝜑𝑙𝑗
(±)

(𝑟; 𝑘) as  

𝜑𝑙𝑗
(𝑟)

(𝑟; 𝑘) = 𝐹𝑙(𝑘𝑟) 

    + ∫
∞

0
𝑑𝑟′𝑔𝐹𝑅,𝑙(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗(𝑟′)𝜑𝑙𝑗

(𝑟)
(𝑟′; 𝑘) (4) 

 �̃�𝑙𝑗
(𝑟)

(𝑟; 𝑘) = 𝐹𝑙(𝑘𝑟) 

    + ∫
∞

0
𝑑𝑟′𝑔𝐹𝑅,𝑙(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗

∗ (𝑟′)�̃�𝑙𝑗
(𝑟)

(𝑟′; 𝑘) (5) 

𝜑𝑙𝑗
(±)

(𝑟; 𝑘) = 𝑂𝑙
(±)

(𝑘𝑟) 

    + ∫
∞

0
𝑑𝑟′𝑔𝐹𝐿,𝑙(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗(𝑟′)𝜑𝑙𝑗

(±)
(𝑟′; 𝑘) (6) 

and  

�̃�𝑙𝑗
(±)

(𝑟; 𝑘) = 𝑂𝑙
(±)

(𝑘𝑟) 

    + ∫
∞

0
𝑑𝑟′𝑔𝐹𝐿,𝑙(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗

∗ (𝑟′)�̃�𝑙𝑗
(±)

(𝑟′; 𝑘) (7) 

where 𝐹𝑙(𝑘𝑟) = 𝑟𝑗𝑙(𝑘𝑟)  and 𝑂𝑙
(±)

= 𝑟ℎ𝑙
(±)

(𝑘𝑟) 

with ℎ𝑙
(±)

(𝑘𝑟) = 𝑗𝑙(𝑘𝑟) ± 𝑖𝑛𝑙(𝑘𝑟), and 𝑔𝐹𝑅,𝑙(𝑟, 𝑟′; 𝑘) 

and 𝑔𝐹𝐿,𝑙(𝑟, 𝑟′; 𝑘)  are the Green’s functions 

defined by  

𝑔𝐹𝑅,𝑙(𝑟, 𝑟′; 𝑘) ≡ −
2𝑚

ℏ2

𝑘

2𝑖
𝜃(𝑟 − 𝑟′)𝑟, 𝑟′ 

× [ℎ𝑙
(−)

(𝑘𝑟)ℎ𝑙
(+)

(𝑘𝑟′) 

          −ℎ𝑙
(−)

(𝑘𝑟′)ℎ𝑙
(+)

(𝑘𝑟)] (8) 

and  

𝑔𝐹𝐿,𝑙(𝑟, 𝑟′; 𝑘) ≡
2𝑚

ℏ2

𝑘

2𝑖
𝑟, 𝑟′𝜃(𝑟′ − 𝑟) 

     × [ℎ𝑙
(−)

(𝑘𝑟)ℎ𝑙
(+)

(𝑘𝑟′) 

         −ℎ𝑙
(−)

(𝑘𝑟′)ℎ𝑙
(+)

(𝑘𝑟)]. (9) 

 

By taking the limit of 𝑟 → ∞ in Eqs.(4) and 

(5), we can obtain  

lim
𝑟→∞

𝜑𝑙𝑗
(𝑟)

(𝑟; 𝑘) 

→ 𝐹𝑙(𝑘𝑟) 

 −
2𝑚

ℏ2

𝑘

2𝑖
𝑂𝑙

(−)
(𝑘𝑟) ∫

∞

0
𝑑𝑟′𝑂𝑙

(+)
(𝑘𝑟′)𝑈𝑙𝑗(𝑟′)𝜑𝑙𝑗

(𝑟)
(𝑟′; 𝑘) 

+
2𝑚

ℏ2

𝑘

2𝑖
𝑂𝑙

(+)
(𝑘𝑟) ∫

∞

0
𝑑𝑟′𝑂𝑙

(−)
(𝑘𝑟′)𝑈𝑙𝑗(𝑟′)𝜑𝑙𝑗

(𝑟)
(𝑟′; 𝑘)  (10) 

and  

lim
𝑟→∞

�̃�𝑙𝑗
(𝑟)

(𝑟; 𝑘) 

= 𝐹𝑙(𝑘𝑟) 

−
2𝑚

ℏ2

𝑘

2𝑖
𝑂𝑙

(−)
(𝑘𝑟) ∫

∞

0

𝑑𝑟′𝑂𝑙
(+)

(𝑘𝑟′)𝑈𝑙𝑗
∗ (𝑟′)�̃�𝑙𝑗

(𝑟)
(𝑟′; 𝑘) 

+
2𝑚

ℏ2

𝑘

2𝑖
𝑂𝑙

(+)(𝑘𝑟) ∫
∞

0

𝑑𝑟′𝑂𝑙
(−)

(𝑘𝑟′)𝑈𝑙𝑗
∗ (𝑟′)�̃�𝑙𝑗

(𝑟)(𝑟′; 𝑘). (11) 

Since the Jost function is defined as a 

coefficient function to connect the regular and 

irregular solution as  

𝜑𝑙𝑗
(𝑟)

(𝑟; 𝑘) =
1

2
[𝐽𝑙𝑗

(+)
(𝑘)𝜑𝑙𝑗

(−)
(𝑟; 𝑘) + 𝐽𝑙𝑗

(−)
(𝑘)𝜑𝑙𝑗

(+)
(𝑟; 𝑘)] 

 (12) 

and  

�̃�𝑙𝑗
(𝑟)

(𝑟; 𝑘) =
1

2
[𝐽𝑙𝑗

(+)
(𝑘)�̃�𝑙𝑗

(−)
(𝑟; 𝑘) + 𝐽𝑙𝑗

(−)
(𝑘)�̃�𝑙𝑗

(+)
(𝑟; 𝑘)],

 (13) 

we can obtain  

𝐽𝑙𝑗
(±)

(𝑘)

= 1 ∓
2𝑚

ℏ2

𝑘

𝑖
∫

∞

0

𝑑𝑟′𝑂𝑙
(±)

(𝑘𝑟′)𝑈𝑙𝑗(𝑟′)𝜑𝑙𝑗
(𝑟)

(𝑟′; 𝑘) 

 (14) 

and  

𝐽𝑙𝑗
(±)

(𝑘) = 1 ∓
2𝑚

ℏ2

𝑘

𝑖
∫

∞

0
𝑑𝑟′𝑂𝑙

(±)
(𝑘𝑟′)𝑈𝑙𝑗

∗ (𝑟′)�̃�𝑙𝑗
(𝑟)

(𝑟′; 𝑘).

 (15) 

It is rather easy to prove the following 

expressions of the Jost function:  

𝐽𝑙𝑗
(±)

(𝑘) = ±
2𝑚

ℏ2

𝑘

𝑖
𝑊𝑙𝑗(𝜑𝑙𝑗

(𝑟)
, 𝜑𝑙𝑗

(±)
; 𝑘) (16) 

and  

𝐽𝑙𝑗
(±)

(𝑘) = ±
2𝑚

ℏ2

𝑘

𝑖
𝑊𝑙𝑗(�̃�𝑙𝑗

(𝑟)
, �̃�𝑙𝑗

(±)
; 𝑘), (17) 

where 𝑊𝑙𝑗 is the Wronskian is defined by  

𝑊𝑙𝑗(𝜑𝑙𝑗
(𝑟)

, 𝜑𝑙𝑗
(±)

; 𝑘) =
ℏ2

2𝑚
[𝜑𝑙𝑗

(𝑟)
(𝑟; 𝑘)

𝜕𝜑𝑙𝑗
(±)

(𝑟;𝑘)

𝜕𝑟
−

𝜑𝑙𝑗
(±)

(𝑟; 𝑘)
𝜕𝜑𝑙𝑗

(𝑟)
(𝑟;𝑘)

𝜕𝑟
] (18) 
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and  

𝑊𝑙𝑗(�̃�𝑙𝑗
(𝑟)

, �̃�𝑙𝑗
(±)

; 𝑘) 

=
ℏ2

2𝑚
[�̃�𝑙𝑗

(𝑟)
(𝑟; 𝑘)

𝜕�̃�𝑙𝑗
(±)

(𝑟;𝑘)

𝜕𝑟
− �̃�𝑙𝑗

(±)
(𝑟; 𝑘)

𝜕�̃�𝑙𝑗
(𝑟)

(𝑟;𝑘)

𝜕𝑟
]. (19) 

By taking the limit of 𝑟 → 0 for Eq.(6) and 

Eq.(7), we can obtain  

lim
𝑟→0

𝜑𝑙𝑗
(±)

(𝑟; 𝑘) 

→ 𝑂𝑙
(±)

(𝑘𝑟) 

+
2𝑚

ℏ2

𝑘

2𝑖
𝑂𝑙

(−)
(𝑘𝑟) ∫

∞

0

𝑑𝑟′𝑂𝑙
(+)

(𝑘𝑟′)𝑈𝑙𝑗(𝑟′)𝜑𝑙𝑗
(±)

(𝑟′; 𝑘) 

−
2𝑚

ℏ2

𝑘

2𝑖
𝑂𝑙

(+)
(𝑘𝑟) ∫

∞

0

𝑑𝑟′𝑂𝑙
(−)

(𝑘𝑟′)𝑈𝑙𝑗(𝑟′)𝜑𝑙𝑗
(±)

(𝑟′; 𝑘) 

  (20) 

 and  

lim
𝑟→0

�̃�𝑙𝑗
(±)

(𝑟; 𝑘) 

= 𝑂𝑙
(±)

(𝑘𝑟) 

+
2𝑚

ℏ2

𝑘

2𝑖
𝑂𝑙

(−)
(𝑘𝑟) ∫

∞

0

𝑑𝑟′𝑂𝑙
(+)

(𝑘𝑟′)𝑈𝑙𝑗
∗ (𝑟′)�̃�𝑙𝑗

(±)
(𝑟′; 𝑘) 

−
2𝑚

ℏ2

𝑘

2𝑖
𝑂𝑙

(+)
(𝑘𝑟) ∫

∞

0

𝑑𝑟′𝑂𝑙
(−)

(𝑘𝑟′)𝑈𝑙𝑗
∗ (𝑟′)�̃�𝑙𝑗

(±)
(𝑟′; 𝑘) 

 (21) 

Using Eqs.(16)-(17), Eqs.(18)-(19) and 

Eqs.(20)-(21), we can obtain  

𝐽𝑙𝑗
(±)

(𝑘) = 1 ∓
2𝑚

ℏ2

𝑘

𝑖
∫

∞

0

𝑑𝑟′𝐹𝑙(𝑘𝑟′)𝑈𝑙𝑗(𝑟′)𝜑𝑙𝑗
(±)

(𝑟′; 𝑘) 

 (22) 

 and  

𝐽𝑙𝑗
(±)

(𝑘) = 1 ∓
2𝑚

ℏ2

𝑘

𝑖
∫

∞

0

𝑑𝑟′𝐹𝑙(𝑘𝑟′)𝑈𝑙𝑗
∗ (𝑟′)�̃�𝑙𝑗

(±)
(𝑟′; 𝑘). 

 (23) 

Thus we obtained the Jost function by three 

types of expressions for each 𝐽𝑙𝑗
(±)

(𝑘) and 𝐽𝑙𝑗
(±)

(𝑘) 

as given by Eqs.(14), (15), (16), (17), (22) and (23). 

The Jost functions satisfy the following 

symmetric properties.  

𝐽𝑙𝑗
(±)∗

(𝑘∗) = 𝐽𝑙𝑗
(∓)

(𝑘) (24) 

𝐽𝑙𝑗
(±)

(−𝑘) = 𝐽𝑙𝑗
(∓)

(𝑘) (25) 

and  

𝐽𝑙𝑗
(±)

(−𝑘) = 𝐽𝑙𝑗
(∓)

(𝑘). (26) 

2.2 Bound state 

The boundary condition for a bound state 𝜖𝑛 =

𝜖(𝑘𝑛) is given by  

{
𝐽𝑙𝑗

(+)
(𝑘𝑛) = 0  𝑓𝑜𝑟  𝜑𝑛𝑙𝑗  

𝐽𝑙𝑗
(+)

(�̃�𝑛) = 0  𝑓𝑜𝑟  �̃�𝑛𝑙𝑗  
. (27) 

From Eqs.(24)-(26), we can obtain  

𝐽𝑙𝑗
(+)

(𝑘) = 𝐽𝑙𝑗
(+)∗

(−𝑘∗). (28) 

Therefore we can find the relation between 

𝑘𝑛 and �̃�𝑛 as  

�̃�𝑛 = −𝑘𝑛
∗ . (29) 

The relation between the energy eigen value 

for the dual state 𝜖(�̃�𝑛) and 𝜖(𝑘𝑛) is given by  

𝜖(�̃�𝑛) = 𝜖(−𝑘𝑛
∗ ) = 𝜖∗(𝑘𝑛). (30) 

It is very easy to rove that the orthogonality 

of the bound state wave function is given by  

∫
∞

0
𝑑𝑟�̃�𝑛𝑙𝑗

∗ (𝑟)𝜑𝑚𝑙𝑗(𝑟) = 𝛿𝑛𝑚. (31) 

By dividing the potential into two parts, real 

and imaginary parts as  

𝑈𝑙𝑗 = 𝑈𝑙𝑗
𝑟 − 𝑖𝑈𝑙𝑗

𝑖  (32) 

and applying the two potential formula to the 

Green’s function, we can obtain the Dyson 

equation  

𝐺𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘) = 𝐺0,𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘) 

+ ∫
∞

0

𝑑𝑟′′𝐺0,𝑙𝑗
(±)

(𝑟, 𝑟′′; 𝑘)(−𝑖𝑈𝑙𝑗
𝑖 (𝑟′′))𝐺𝑙𝑗

(±)
(𝑟′′, 𝑟′; 𝑘) 

 (33) 
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where 𝐺0,𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘) is the Green’s function which 

satisfies the following equation  

(𝜖(𝑘) − ℎ𝑙𝑗
0 (𝑟))𝐺0,𝑙𝑗

(±)
(𝑟, 𝑟′; 𝑘) = 𝛿(𝑟 − 𝑟′) (34) 

with  

ℎ𝑙𝑗
0 (𝑟) = −

ℏ2

2𝑚
(

𝜕2

𝜕𝑟2
−

𝑙(𝑙 + 1)

𝑟2
) + 𝑈𝑙𝑗

𝑟 (𝑟). 

  Using the spectral representation of 

𝐺0,𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘)  and 𝐺𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘)  in Eq.(33), we can 

obtain  

𝜖𝑛𝑙𝑗 ∼ 𝜖𝑛𝑙𝑗
0 − 𝑖

〈𝜑𝑛𝑙𝑗
0 |𝑈𝑙𝑗

𝑖 |𝜑𝑛𝑙𝑗〉

〈𝜑𝑛𝑙𝑗
0 |𝜑𝑛𝑙𝑗〉

, (35) 

where 𝜑𝑛𝑙𝑗
0  is the bound state wave function 

satisfies ℎ𝑙𝑗
0 |𝜑𝑛𝑙𝑗

0 〉 = 𝜖𝑛𝑙𝑗
0 |𝜑𝑛𝑙𝑗

0 〉. 

If the potential is real function (𝑈𝑙𝑗
∗ → 𝑈𝑙𝑗 ), 

obviously 𝐽𝑙𝑗
(+)

(𝑘) → 𝐽𝑙𝑗
(+)

(𝑘), �̃�𝑛 → 𝑘𝑛. 

However,  

𝑘𝑛 = −𝑘𝑛
∗  (36) 

is required due to Eq.(29). Therefore, we can find 

that 𝑘𝑛  for the real potential becomes pure 

imaginary, and the energy eigen value becomes 

real number. 

2.3 Scattering state and optical theorem 

The scattering wave function 𝜓𝑙𝑗
(+)

(𝑟; 𝑘)  has the 

asymptotic behavior  

lim
𝑟→∞

𝜓𝑙𝑗
(+)

(𝑟; 𝑘) →
1

2
[𝑂𝑙

(−)
(𝑘𝑟) + 𝑆𝑙𝑗(𝑘)𝑂𝑙

(+)
(𝑘𝑟)], 

 (37) 

with the S-matrix 𝑆𝑙𝑗(𝑘) . The scattering wave 

function as the dual state of Eq.(37) has the 

asymptotic behavior  

lim
𝑟→∞

�̃�𝑙𝑗
(+)

(𝑟; 𝑘) →
1

2
[𝑂𝑙

(−)
(𝑘𝑟) + �̃�𝑙𝑗(𝑘)𝑂𝑙

(+)
(𝑘𝑟)], 

 (38) 

with the S-matrix �̃�𝑙𝑗(𝑘) . By concerning the 

asymptotic behavior of Eqs.(4) and (5), we can find 

that 𝜓𝑙𝑗
(+)

(𝑟; 𝑘) and �̃�𝑙𝑗
(+)

(𝑟; 𝑘) are defined by  

𝜓𝑙𝑗
(+)

(𝑟; 𝑘) =
𝜑𝑙𝑗

(𝑟)
(𝑟;𝑘)

𝐽
𝑙𝑗
(+)

(𝑘)
 (39) 

and  

�̃�𝑙𝑗
(+)

(𝑟; 𝑘) =
�̃�𝑙𝑗

(𝑟)
(𝑟;𝑘)

𝐽
𝑙𝑗
(+)

(𝑘)
. (40) 

The S-matrix 𝑆𝑙𝑗(𝑘) and �̃�𝑙𝑗(𝑘) are defined 

by  

𝑆𝑙𝑗(𝑘) =
𝐽𝑙𝑗

(−)
(𝑘)

𝐽
𝑙𝑗
(+)

(𝑘)
 (41) 

 �̃�𝑙𝑗(𝑘) =
𝐽𝑙𝑗

(−)
(𝑘)

𝐽
𝑙𝑗
(+)

(𝑘)
, (42) 

respectively. 

From Eqs.(24)-(26), we can derive the 

following properties of the S-matrix.  

𝑆𝑙𝑗
∗ (𝑘∗) = �̃�𝑙𝑗

−1(𝑘) (43) 

  

�̃�𝑙𝑗
∗ (𝑘∗) = 𝑆𝑙𝑗

−1(𝑘), (44) 

therefore we can obtain  

𝑆𝑙𝑗
∗ (𝑘∗)�̃�𝑙𝑗(𝑘) = �̃�𝑙𝑗

∗ (𝑘∗)𝑆𝑙𝑗(𝑘) = 1 (45) 

The scattering states (continuum) is defined 

on the real axis of the complex momentum plane. 

Therefore the Unitarity of the S-matrix in the 

complex potential system is given by  

𝑆𝑙𝑗
∗ (𝑘)�̃�𝑙𝑗(𝑘) = �̃�𝑙𝑗

∗ (𝑘)𝑆𝑙𝑗(𝑘) = 1 (46) 

when 𝑘∗ = 𝑘 ( i.e. 𝑘 is real). 

The T-matrix is defined by  

𝑇𝑙𝑗(𝑘) =
𝑖

2
(𝑆𝑙𝑗(𝑘) − 1) (47) 

=
2𝑚𝑘

ℏ2 ∫
∞

0
𝑑𝑟𝐹𝑙(𝑘𝑟)𝑈𝑙𝑗(𝑟)𝜓𝑙𝑗

(+)
(𝑟; 𝑘) (48) 

 and  

�̃�𝑙𝑗(𝑘) =
𝑖

2
(�̃�𝑙𝑗(𝑘) − 1) (49) 
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=
2𝑚𝑘

ℏ2 ∫
∞

0
𝑑𝑟𝐹𝑙(𝑘𝑟)𝑈𝑙𝑗

∗ (𝑟)�̃�𝑙𝑗
(+)

(𝑟; 𝑘). (50) 

 

From Eqs.(48) and (50), we can obtain  

𝑇𝑙𝑗
∗ (𝑘∗) = 𝑆𝑙𝑗

∗ (𝑘∗)�̃�𝑙𝑗(𝑘) (51) 

and  

�̃�𝑙𝑗
∗ (𝑘∗) = �̃�𝑙𝑗

∗ (𝑘∗)𝑇𝑙𝑗(𝑘). (52) 

Eq.(51) can be rewritten as  

−
1

2𝑖
(�̃�𝑙𝑗(𝑘) − 𝑇𝑙𝑗

∗ (𝑘∗)) = 𝑇𝑙𝑗
∗ (𝑘∗)�̃�𝑙𝑗(𝑘). (53) 

This is the generalized optical theorem. 

When the potential is real, �̃�𝑙𝑗(𝑘) = 𝑇𝑙𝑗(𝑘). 

Therefore Eq.(53) becomes  

− 𝐼𝑚   𝑇𝑙𝑗(𝑘) = |𝑇𝑙𝑗(𝑘)|2 (54) 

on the real axis of the complex momentum 𝑘 ( i.e.  

𝑘∗ = 𝑘). 

The Green’s theorem leads the following 

Lippmann-Schwinger equations  

𝜓𝑙𝑗
(+)

(𝑟; 𝑘) = 𝐹𝑙(𝑘𝑟) 

+ ∫
∞

0
𝑑𝑟′𝐺𝐹,𝑙

(+)
(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗(𝑟′)𝜓𝑙𝑗

(+)
(𝑟′; 𝑘) (55) 

 and  

�̃�𝑙𝑗
(+)

(𝑟; 𝑘) = 𝐹𝑙(𝑘𝑟) 

+ ∫
∞

0
𝑑𝑟′𝐺𝐹,𝑙

(+)
(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗

∗ (𝑟′)�̃�𝑙𝑗
(+)

(𝑟′; 𝑘). (56) 

Using the Green’s function, which is written 

in many textbook as the free particle Green’s 

function, defined by:  

𝐺𝐹,𝑙
(±)

(𝑟, 𝑟′; 𝑘) 

= ∓𝑖
2𝑚𝑘

ℏ2
 

× [𝜃(𝑟 − 𝑟′)𝐹𝑙(𝑘𝑟′)𝑂𝑙
(±)

(𝑘𝑟) 

 +𝜃(𝑟′ − 𝑟)𝐹𝑙(𝑘𝑟)𝑂𝑙
(±)

(𝑘𝑟′)], (57) 

 

 

  

Fig. 1. (Color online) The square of the Jost function 

|𝐽𝑙𝑗
(+)

(𝑘)|2 for 𝑑5/2 which is plotted as a function of the 

complex momentum 𝑘 

  

  

Fig. 2. (Color online) The same as Fig.1 but for 

|𝐽𝑙𝑗
(+)

(𝑘)|2 

   Also, the Green’s theorem leads the another 

types of equations:  

𝜓𝑙𝑗
(+)

(𝑟; 𝑘) = 𝐹𝑙(𝑘𝑟) +

∫
∞

0
𝑑𝑟′𝐺𝑙𝑗

(+)
(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗(𝑟′)𝐹𝑙(𝑘𝑟′) (58) 

 and  

�̃�𝑙𝑗
(+)

(𝑟; 𝑘) = 𝐹𝑙(𝑘

+ ∫
∞

0

𝑑𝑟′�̃�𝑙𝑗
(+)

(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗
∗ (𝑟′)𝐹𝑙(𝑘𝑟′) 

 (59) 
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using the Green’s function defined by  

𝐺𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘) 

= ∓𝑖
2𝑚

ℏ2

𝑘

𝐽𝑙𝑗

(±)
(𝑘)

 

× [𝜃(𝑟 − 𝑟′)𝜑𝑙𝑗
(𝑟)

(𝑟′; 𝑘)𝜑𝑙𝑗
(±)

(𝑟; 𝑘) 

+𝜃(𝑟′ − 𝑟)𝜑𝑙𝑗
(𝑟)

(𝑟; 𝑘)𝜑𝑙𝑗
(±)

(𝑟′; 𝑘)] (60) 

 and  

�̃�𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘) 

= ∓𝑖
2𝑚

ℏ2

𝑘

𝐽𝑙𝑗

(±)
(𝑘)

 

× [𝜃(𝑟 − 𝑟′)�̃�𝑙𝑗
(𝑟)

(𝑟′; 𝑘)�̃�𝑙𝑗
(±)

(𝑟; 𝑘) 

 +𝜃(𝑟′ − 𝑟)�̃�𝑙𝑗
(𝑟)

(𝑟; 𝑘)�̃�𝑙𝑗
(±)

(𝑟′; 𝑘)]. (61) 

𝜓𝑙𝑗
(−)

(𝑟; 𝑘) and �̃�𝑙𝑗
(−)

(𝑟; 𝑘) are defined by  

𝜓𝑙𝑗
(−)

(𝑟; 𝑘) ≡ 𝜓𝑙𝑗
(+)∗

(𝑟; 𝑘∗) (62) 

 and  

�̃�𝑙𝑗
(−)

(𝑟; 𝑘) ≡ �̃�𝑙𝑗
(+)∗

(𝑟; 𝑘∗) (63) 

because 𝜓𝑙𝑗
(−)

(𝑟; 𝑘)  and �̃�𝑙𝑗
(−)

(𝑟; 𝑘)  are the time-

reversal state of 𝜓𝑙𝑗
(+)

(𝑟; 𝑘)  and �̃�𝑙𝑗
(+)

(𝑟; 𝑘) . 

Therefore we can obtain  

𝜓𝑙𝑗
(−)

(𝑟; 𝑘) 

= 𝐹𝑙(𝑘𝑟) + ∫
∞

0

𝑑𝑟′𝐺𝐹,𝑙
(−)

(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗
∗ (𝑟′)𝜓𝑙𝑗

(−)
(𝑟′; 𝑘) 

 (64) 

= 𝐹𝑙(𝑘𝑟) + ∫
∞

0
𝑑𝑟′�̃�𝑙𝑗

(−)
(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗

∗ (𝑟′)𝐹𝑙(𝑘𝑟′) (65) 

=
�̃�𝑙𝑗

(𝑟)
(𝑟;𝑘)

𝐽
𝑙𝑗
(−)

(𝑘)
 (66) 

 and  

�̃�𝑙𝑗
(−)

(𝑟; 𝑘) 

= 𝐹𝑙(𝑘𝑟) + ∫
∞

0

𝑑𝑟′𝐺𝐹,𝑙
(−)

(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗(𝑟′)�̃�𝑙𝑗
(−)

(𝑟′; 𝑘) 

 (67) 

= 𝐹𝑙(𝑘𝑟) + ∫
∞

0
𝑑𝑟′𝐺𝑙𝑗

(−)
(𝑟, 𝑟′; 𝑘)𝑈𝑙𝑗(𝑟′)𝐹𝑙(𝑘𝑟′) (68) 

=
𝜑𝑙𝑗

(𝑟)
(𝑟;𝑘)

𝐽
𝑙𝑗
(−)

(𝑘)
. (69) 

From Eqs.(55), (56), (58), (59), (64), (65), (67) 

and (68), we can derive the following Dyson 

equations  

𝐺𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘) 

= 𝐺𝐹,𝑙
(±)

(𝑟, 𝑟′; 𝑘) 

+ ∫
∞

0
𝑑𝑟′′𝐺𝐹,𝑙

(±)
(𝑟, 𝑟′′; 𝑘)𝑈𝑙𝑗(𝑟′′)𝐺𝑙𝑗

(±)
(𝑟′′, 𝑟′; 𝑘)(70) 

 and  

�̃�𝑙𝑗
(±)

(𝑟, 𝑟′; 𝑘) 

= 𝐺𝐹,𝑙
(±)

(𝑟, 𝑟′; 𝑘) 

+ ∫
∞

0
𝑑𝑟′′𝐺𝐹,𝑙

(±)
(𝑟, 𝑟′′; 𝑘)𝑈𝑙𝑗

∗ (𝑟′′)�̃�𝑙𝑗
(±)

(𝑟′′, 𝑟′; 𝑘). (71) 

Using Eqs.(55), (56) and (71), we can derive  

𝜓𝑙𝑗
(+)

(𝑟; 𝑘) 

= �̃�𝑙𝑗
(+)

(𝑟; 𝑘) 

+ ∫
∞

0

𝑑𝑟′�̃�𝑙𝑗
(+)

(𝑟, 𝑟′; 𝑘)(𝑈𝑙𝑗(𝑟′) − 𝑈𝑙𝑗
∗ (𝑟′))𝜓𝑙𝑗

(+)
(𝑟′; 𝑘) 

 (72) 

It should be noted that �̃�𝑙𝑗
(+)

(𝑟; 𝑘) =

𝜓𝑙𝑗
(+)

(𝑟; 𝑘)  when the potential is real ( i.e. 𝑈𝑙𝑗 =

𝑈𝑙𝑗
∗ ). 

From the limit 𝑟 → ∞  of Eq.(72), we can 

obtain  

�̃�𝑙𝑗(𝑘) 

= 𝑇𝑙𝑗(𝑘) 

−
2𝑚𝑘

ℏ2 ∫
∞

0
𝑑𝑟′�̃�𝑙𝑗

(+)
(𝑟′; 𝑘)(𝑈𝑙𝑗(𝑟′) − 𝑈𝑙𝑗

∗ (𝑟′))𝜓𝑙𝑗
(+)

(𝑟′; 𝑘).

 (73) 
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By inserting Eq.(73) into Eq.(53), the 

generalized optical theorem is rewritten as  

− 𝐼𝑚   𝑇𝑙𝑗(𝑘) 

= |𝑇𝑙𝑗(𝑘)|2 −
2𝑚𝑘

ℏ2
∫

∞

0

𝑑𝑟′|𝜓𝑙𝑗
(+)

(𝑟′; 𝑘)|2   𝐼𝑚   𝑈𝑙𝑗(𝑟′), 

 (74) 

when 𝑘 is real. 

This is the optical theorem with the complex 

potential. The left hand side of Eq.(74) represents 

the total cross section. In the right hand side of 

Eq.(74), the 1st term represents the elastic 

scattering cross section, the 2nd term represents 

the difference between the total and elastic cross 

section. When    𝐼𝑚   𝑈𝑙𝑗(𝑟)  is negative, the 

potential is absorptive because the 2nd term is 

positive. (The signature of the absorption by 

potential is given by 𝜎𝑡𝑜𝑡 > 𝜎𝑒𝑙.) 

 

Fig. 3.  Figure  3: (Color online) The square of the Jost 

function |𝐽𝑙𝑗
(+)

(𝑘)|2 for 𝑑5/2 which is plotted on the 

first Riemann sheet 𝜖(1) 

  

Fig. 4. (Color online) The same as Fig.3 but on the 

second Riemann sheet 𝜖(2) 

3   Numerical results 

We adopt the complex Woods-Saxon potential 

which is given by  

𝑈𝑙𝑗(𝑟) = − [𝑉1𝑓𝑤𝑠(𝑥1) + 𝑉2

1

𝑎2𝑟
𝑔𝑤𝑠(𝑥2)   𝑙 ⋅    𝜎 ] 

−𝑖 [𝑉3𝑓𝑤𝑠(𝑥3) + 𝑉4
1

𝑎4𝑟
𝑔𝑤𝑠(𝑥4)   𝑙 ⋅    𝜎 ] (75) 

𝑓𝑤𝑠(𝑥) =
1

1+𝑒𝑥 ,    𝑔𝑤𝑠(𝑥) = −
𝑑𝑓𝑤𝑠(𝑥)

𝑑𝑥
 (76) 

𝑥𝑖 = (𝑟 − 𝑅𝑖)/𝑎𝑖 . (77) 

𝑅𝑖 = 𝛼𝑖𝐴
𝛾𝑖 + 𝛽𝑖 ,    (𝑖 ∈ 1, ⋯ ,4) (78) 

 𝑙 ⋅    𝜎 = 𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) −
3

4
. (79) 

As the original set of the parameters, we 

adopt  

𝐴 = 24 

𝑉1 = 51.0   𝑀𝑒𝑉 ,    𝑉2 = 17.0   𝑀𝑒𝑉  𝑓𝑚2  

𝑉3 = 5.0   𝑀𝑒𝑉 ,    𝑉4 = 0.0   𝑀𝑒𝑉  𝑓𝑚2  

𝑎1 = ⋯ = 𝑎4 = 0.67   𝑓𝑚    

𝛼1 = ⋯ = 𝛼4 = 1.27   𝑓𝑚    

𝛽1 = ⋯ = 𝛽4 = 0.0   𝑓𝑚    

𝛾1 = ⋯ = 𝛾4 = 0.33   𝑓𝑚    

 

Fig. 5. (Color online) The analytic continuation between 

the first and second Riemann sheets. In the left panel, 

the upper-half of Fig.3 and the lower-half of Fig.4 are 

shown. In the right panel, the upper-half of Fig.4 and 

the lower-half of Fig.3 are shown 

In Figs.1 and 2, the numerical results of 

|𝐽𝑙𝑗
(+)

(𝑘)|2  and |𝐽𝑙𝑗
(+)

(𝑘)|2  for 𝑑5/2  calculated with 

the complex Woods-Saxon potential are shown on 
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the complex momentum-𝑘 plane. Because of the 

definition of the S-matrix Eqs.(41) and (42), the 

minimum points which correspond to |𝐽𝑙𝑗
(+)

(𝑘)|2 =

0 in Fig.1 and |𝐽𝑙𝑗
(+)

(𝑘)|2 = 0 in Fig.2 represent the 

poles of 𝑆𝑙𝑗(𝑘)  and �̃�𝑙𝑗(𝑘) , respectively. We can 

see the symmetric properties between 𝐽𝑙𝑗
(+)

(𝑘) and 

𝐽𝑙𝑗
(+)

(𝑘)  which are given by Eqs.(24)-(26) in 

comparison between Fig.1 and Fig.2. It should be 

noted that the S-matrix poles will be found 

symmetrically on the Im 𝑘  axis, and the bound 

states appear on the Im 𝑘 axis, if the potential is 

given by real function. 

Since the energy is represented by the 

momentum as 𝜖(𝑘) =
ℏ2𝑘2

2𝑚
, two kinds of the 

Riemann sheets of the complex energy, the first 

and second Riemann sheets ( 𝜖(1)  and 𝜖(2) ), are 

defined by 𝑘  for Im 𝑘 > 0  and Im 𝑘 < 0 , 

respectively. 

In Figs.3 and 4, |𝐽𝑙𝑗
(+)

(𝑘)|2  for 𝑑5/2  is 

represented on 𝜖(1)- and 𝜖(2)-planes, respectively. 

Note that Figs.3 and 4 are corresponding to the 

upper-half and lower-half of the complex-𝑘 plane 

shown in Fig.1, respectively. One can see the 

discontinuity between the first and fourth 

quadrant across the branch-cut which is defined by 

the real axis of the complex energy plane in the 

positive region in both Figs.3 and 4. 

The analytic continuation of 𝜖(1)- and 𝜖(2)-

plane is shown in Fig.5. The first quadrant of Fig.3 

is connected with the fourth quadrant of Fig.4, and 

the first quadrant of Fig.4 is connected with the 

fourth quadrant of Fig.3. This is due to the 

regularity of the Jost function on the complex 

momentum plane. 

In Table.1, we show the numerical results for 

the single particle levels with the real potential and 

complex potential obtained by searching the zeros 

of the Jost function on the complex momentum 

plane. The imaginary part of the single particle 

levels Im 𝑒𝑛  obtained by using the complex 

potential are given by negative values. This is 

consistent with the approximated formula given 

by Eq.(35) since the imaginary part of the potential 

is given by the negative value in this study. The 

real part of the single particle levels are slightly 

shifted to higher energy due to the effect of the 

imaginary part of the potential.

Table 1. Single particle levels for the bound neutrons for the real potential and complex potential, respectively. 

    Real potential Complex potential 

(𝑉3 = 0 MeV) (𝑉3 = 5.0 MeV) 

𝑛 𝑙 2𝑗 Re 𝑒𝑛 Im 𝑒𝑛 Re 𝑒𝑛 Im 𝑒𝑛 

1 0 1 -34.7800 0.0000 -34.7596 -4.3341 

1 1 3 -23.5408 0.0000 -23.4992 -3.7736 

1 1 1 -19.7961 0.0000 -19.7520 -3.8138 

1 2 5 -12.0097 0.0000 -11.9410 -3.1081 

2 0 1 -8.6164 0.0000 -8.5116 -2.7687 

1 2 3 -5.3174 0.0000 -5.2062 -2.9906 

1 3 7 -0.7096 0.0000 -0.5793 -2.2661 
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4 Conclution 

In this study, we extended the Jost function 

formalism based on the complex potential. Since 

the Jost function is defined as the coefficient 

function to connect the regular and irregular 

solutions of the Schrodinger equation, the Jost 

function can be derived by finding the relation 

between the regular and irregular solutions by 

using the Green’s theorem with the proper 

boundary conditions for each solutions. In the 

system defined by the Hamiltonian 𝐻  with the 

complex potential, two kinds of the Jost function 

are defined, the Jost function for the system 

defined by 𝐻  and the Jost function for the dual 

system defined by 𝐻∗. In order to make sure our 

derivation, we derived the symmetric properties of 

the Jost function and confirmed them by the 

numerical results represented on the complex 

energy/momentum plane. 

As is written in many textbooks, the 

generalized optical theorem which includes the 

absorption as the effect of the imaginary part of the 

complex potential is rather well known. In order to 

confirm our derivation of the Jost function, firstly 

we derived the generalized unitarity of the S-

matrix by using the Jost function which is 

calculated by the complex potential. Using the 

generalized unitarity of the S-matrix, we derived 

the generalized optical theorem. In order to 

confirm the effect of the imaginary part of the 

complex potential to the bound states, we derived 

an approximated formula which shows the effect 

of the imaginary part of the potential to the single 

particle levels by using the Green’s function 

method. And we confirmed that the numerical 

results for the single particle levels obtained by 

using the Jost function are consistent with the 

derived formula. 

The results of Table 1 are not qualitatively 

consistent with the results of the previous cPVC 

calculation. According to the discussion and 

results in [12], the complex potential which is 

calculated as the self-energy function within the 

PVC has the effect to shift the single particle levels 

to lower energy, and provides large fragmentation 

to the single particle levels far from the Fermi level. 

As shown in [5, 6, 7, 8], the PVC self-energy 

function works very well as the microscopic optical 

potential also for the description of the 𝑁𝐴 -

scattering cross section. 

For the quantitative reproduction of the 

experimental data of the 𝑁𝐴-scattering, the global 

optical potential has adopted the complex Woods-

Saxon form with the energy dependence. The 

energy dependence has been given by adjusting 

the experimental data, but the energy dependence 

has been given only for the positive energy region, 

except the Dispersive Optical Potential [14]. In 

order to obtain the proper interpretation of physics 

from the analysis of the experimental data using 

the phenomenological optical potential, the optical 

potential should be available for both the nuclear 

structure (single particle levels and their 

fragmentation and so on) and the nuclear reaction. 

The Jost function may be a powerful tool to 

construct such a new type of the optical potential. 

According to the Feshbach projection theory 

[2], the origin of the complex potential is the 

coupling of channels, and the channel-coupling 

equation can be reduced to the single channel 

problem by introducing the complex optical 

potential. As we showed in this paper, two kinds 

of the Riemann sheets are defined for two types of 

the Jost function with the complex potential. On 

the other hand, the multiple Riemann sheets (more 

than two, depending on the number of channels) 

are expected for the channel-coupling equation 

(The HFB framework is also a kind of the channel-

coupling method of two channels in a broad sense, 

and three types of the Riemann sheets are defined 

within the HFB framework [13]). Clarifying the 

relationship between the Riemann surface defined 



Hue University Journal of Science: Natural Science 
Vol. 132, No. 1D, 87–97, 2023 

pISSN 1859-1388 
eISSN 2615-9678 

 

DOI: 10.26459/hueunijns.v132i1D.7111 97 

 

 

by the complex optical potential and the coupled-

channel method is also a very interesting subject 

and one of the directions for future research using 

the method of Jost functions. 
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