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Abstract. By using a classical result of Cartan, we establish a Second Main Theorem type estimate for an alge-

braically non-degenerate holomorphic curve into n-dimensional complex projective space intersecting a Fermat-type

hypersurface, in which the counting functions are truncated to level n. Consequently, we obtain some degeneracy

results and a defect relation for holomorphic curves.
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1 Introduction

In 1925, Rolf Nevanlinna [1] developed the value distri-

bution theory by comparing the growth of a holomor-

phic map f : C → CP1 with a number of impacts of f

on discs with respect to a collection of q ≥ 3 distinct

points in CP1. The core of Nevanlinna Theory includes

two Main Theorems. The First Main Theorem shows

that the value of characteristic function Tf (r, a) does not

depend on complex number a, which implies that Tf (r)

is an upper bound of the counting function. On the

other hand, the Second Main Theorem of Nevanlinna

shows that Tf (r) is bounded from above by a sum of

at least three distinct counting functions with truncated

level 1.

In 1933, Henri Cartan [2] extended Nevanlinna’s

Second Main Theorem for holomorphic curves intersect-

ing hyperplanes in general position in complex projec-

tive spaces. The Cartan-Nevanlina Theorem gives us an

estimate about the frequency of intersection of a linearly

non-degenerate holomorphic curve f : C → CPn and

a family of q ≥ n + 2 hyperplanes in general position.

It is natural that people want to extend this result for a

family of hypersurfaces. This task was first completed

by Min Ru [3]. He established a Second Main Theo-

rem for an arbitrary q ≥ n + 2 hypersurfaces in general

position. Then there appeared a demand to obtain an

estimate for less than n + 2 hypersurfaces. In this direc-

tion, Huynh, Vu and Xie [4] proved a Second Main Theo-

rem for only one generic hypersurface of a degree large

enough. Later, Yang, Shi and Pang [5] proved a Second

Main Theorem for an algebraically non-degenerate holo-

morphic curve intersecting a Fermat-type hypersurface

without the level of truncation. Nguyen [6] improved

the result of Yang, Shi and Pang [5] by adding level

truncation to the counting function.

Continuing in this direction, in the current pa-

per, we obtain a Second Main Theorem for an alge-

braically non-degenerate holomorphic curve intersecting

a Fermat-type hypersurface with a more simple method.

Our estimate is established under these conditions.

DOI: 10.26459/hueunijns.v134i1B.7551 13



Nguyen Thi Xuan Mai et al.

A holomorphic curve f : C → CPn is called alge-

braically non-degenerate if the image of f is not con-

tained in any hypersurface. A family of hypersurfaces

D1, . . . , Dq, q > n + 1 in CPn is said to be in general

position if any distinct n + 1 hypersurfaces among them

have empty intersection.

Throughout this paper, for non-negatively valued

functions φ(r), ψ(r) (r > 0), we write

φ(r) ≤ ψ(r) ∥

if there is a Borel subset E ⊂ [0, ∞) of finite Lebesgue

measure such that the above inequality holds outside E.

Theorem 1.1. (Main Theorem) Let f : C → CPn be an

algebraically non-degenerate holomorphic curve. Let s, b, d

be positive integers with (s + bd) − (n + 1)(s + bn) > 0.

Let Di = {z ∈ CPn | Qi(z)Rd
i (z) = 0}, 0 ≤ i ≤ n, be

hypersurfaces in general position in CPn. Let

D =

{
z ∈ CPn |

n

∑
i=0

Qi(z)Rd
i (z) = 0

}
,

where Qi are homogeneous polynomials of degree s and Ri are

homogeneous polynomials of degree b. Then

[(s + bd)− (n + 1)(s + bn)] Tf (r) ≤ N[n]
f (r, D)+ o(Tf (r)) ∥ .

In fact, by replacing homogeneous polynomials

Ri with zi, we recover the results of Nguyen [6] and

Yang, Shi, Pang [5].

All terminologies will be explained in Section 2.

The detailed proof of main results will be presented

in Section 3. In the last section, we obtain some corol-

laries of degeneracy and a truncated defect relation by

applying the Main Theorem.

2 Preliminaries

Let f : C → CPn be a holomorphic curve. Let f

= ( f0 : . . . : fn) be a reduced representation of f , where

fi are holomorphic functions on C and having no com-

mon zero. Set ∥ f (z)∥ = max{| f0(z)|, . . . , | fn(z)|}. The

characteristic function of f is defined by

Tf (r) :=
1

2π

∫ 2π

0
log

∥∥∥f
(

reiθ
)∥∥∥ dθ,

where the above definition is independent, up to an ad-

ditive constant, of the choice of reduced representation

of f .

Let D be a hypersurface in CPn of degree d. Let

Q be the homogeneous polynomial defining D. Suppose

Q(f) ̸≡ 0, the proximity function m f (r, D) of f with

respect to D is defined by

m f (r, D) :=
1

2π

∫ 2π

0
log

∥∥f
(
reiθ)∥∥d ∥Q∥

|Q(f)
(
reiθ

)
|

dθ,

where ∥Q∥ is the maximum modulo of the coefficients

of C. The above definition is independent, up to an ad-

ditive constant, of the choice of reduced representation

of f .

To define the counting function, let n f (r, D) be

the number of zeros of Q(f) in the disk D(0, r), counting

with multiplicities. The counting function N f (r, D) is

defined by

N f (r, D) =
∫ r

0

(
n f (t, D)− n f (0, D)

) dt
t
+n f (0, D) log r.

For a positive integer M, we denote n[M]
f (r, D) as

the number of zeros of Q(f) in D(0, r), counting at most

M times. The truncated counting function to level M of

f with respect to D is defined by

N[M]
f (r, D) =

∫ r

0

(
n[M]

f (t, D)− n[M]
f (0, D)

) dt
t

+ n[M]
f (0, D) log r.

By using Jensen’s formula, we obtain the First

Main Theorem.

Theorem 2.1. [6] Let f : C → CPn be a holomorphic curve

and let D be a hypersurface in CPn of degree d. If f (C) ̸⊂ D,

then for every real number r with 0 < r < +∞,

d Tf (r) = m f (r, D) + N f (r, D) + O(1),

where O(1) is a constant independent from r. Consequently,

N f (r, D) ≤ d Tf (r) + O(1).
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We define the defects of f with respect to D by

δ f (D) = 1 − lim
r→∞

sup
N f (r, D)

d Tf (r)

and

δ
[n]
f (D) = 1 − lim

r→∞
sup

N[n]
f (r, D)

d Tf (r)
.

It follows from the First Main Theorem that 0 ≤
δ
[n]
f (D) ≤ δ f (D) ≤ 1. Hence, the counting function

is bounded from above by some multiple of characteris-

tic function. In the reverse direction, people try to give

an upper bound to the characteristic function by a cer-

tain sum of counting functions. These types of estimates

are called Second Main Theorems.

In 1933, H. Cartan [2] proved the Second Main

Theorem under these conditions. A holomorphic curve

f : C → CPn is called linearly non-degenerate if and

only if the image of f is not contained in any hyper-

plane. A family of hyperplanes H1, . . . , Hq, q > n + 1 in

CPn is said to be in general position if any distinct n + 1

hyperplanes among them have empty intersection.

Theorem 2.2. [2] Let f : C → CPn be a linearly non-

degenerate holomorphic curve. Let {Hλ}λ= 1,..., q be a family

of q ≥ n + 2 hyperplanes in CPn in general position. Then

(q − n − 1) Tf (r) ≤
q

∑
λ=1

N[n]
f (r, Hλ) + o(Tf (r)) ∥.

Example 2.3. Consider the following holomorphic map

f : z ∈ C → (1 : ez : e2z) = (w0 : w1 : w2) ∈ CP2 and the

following four lines on CP2 given by

Li = {wi = 0} (0 ≤ i ≤ 2), L3 = {w0 + w1 + w2 = 0}.

The characteristic function of f is calculated as

follows:

Tf (r) =
1

4π

∫
|z|=r

log(1 + |ez|2 + |e2z|2)dθ + O(1)

=
1

4π

∫
|z|=r

log(1 + e2r cos θ + e4r cos θ)dθ + O(1)

=
1

4π

∫
cos θ>0

log(1 + e2r cos θ + e4r cos θ)dθ + O(1)

=
1

4π

∫ π/2

−π/2
4r cos θdθ + O(1)

=
2r
π

+ O(1).

Besides, f (C) ∩ Li = ∅ for 0 ≤ i ≤ 2, thus N f (r, Li) =

0 (0 ≤ i ≤ 2). By the First Main Theorem, one has

m f (r, Li) + N f (r, Li) = Tf (r), so m f (r, Li) = Tf (r) =
2r
π

+ O(1) (0 ≤ i ≤ 2). Now, let us compute the count-

ing function and the proximity function of f with respect

to L3. Using Cartan’s Second Main Theorem for f and

the family {Li}0≤i≤3, one has

Tf (r) ≤
3

∑
i=0

N[2]
f (r, Li) + o(Tf (r)) ∥

≤ N f (r, L3) + o(Tf (r)) ∥ .

Combining this with the First Main Theorem, we have

N f (r, L3) = Tf (r) + o(Tf (r)) =
2r
π

+ o(r) ∥,

and hence m f (r, L3) = o(r) ∥.

3 Proof of the Main Theorem

Before giving proof for the Main Theorem, we claim the

following lemma.

Lemma 3.1. Let f : C → CPn be a holomorphic curve. Let

Di = {z ∈ CPn | Qi(z) = 0} , 0 ≤ i ≤ n,

be hypersurfaces of degree d in general position. Sup-

pose that the image of f is not contained in any Di. Let π be

the map given as

π : CPn −→ CPn

Z := [z0 : z1 : . . . : zn] 7−→ [Q0(Z) : Q1(Z) : . . . : Qn(Z)] .

Then, for g = π ◦ f : C → CPn, one has

Tg(r) = d Tf (r) + O(1).

Proof. Consider the set E =
{

z ∈ Cn+1 \ {0} | ∥Z∥ = 1
}

.

Since E is compact, for every Z in E, there exist two

positive numbers C1, C2 such that

C1 ≤ max0≤i≤n |Qi(Z)| ≤ C2, ∀z ∈ E.
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For every Z ∈ Cn+1\ {0} , one has
∥∥∥∥ Z
∥Z∥

∥∥∥∥ = 1.

Thus,
Z

∥Z∥ ∈ E. Hence, C1 ≤ max0≤i≤n

∣∣∣∣Qi

(
Z

∥Z∥

)∣∣∣∣ ≤
C2.

Since Qi are homogeneous polynomials of degree

d, the above inequality implies

C1 ∥Z∥d ≤ ∥[Q0(Z) : Q1(Z) : . . . : Qn(Z)]∥ ≤ C2 ∥Z∥d .

From the above inequalities, one has

C1 ∥ f ∥d ≤ ∥g∥ ≤ C2 ∥ f ∥d .

Then, by the definition of Characteristic function, we

obtain

Tg(r) = d Tf (r) + O(1).

Now, with the use of Lemma 3.1, we can establish

a proof for the Main Theorem.

Proof of Theorem 1.1

Let π be a map as follows:

π : CPn −→ CPn

[z0 : z1 : . . . : zn] 7−→
[

Q0Rd
0 : Q1Rd

1 : . . . : QnRd
n

]
.

Consider the curve g = π ◦ f . Since f is algebraically

non-degenerate, g is linearly non-degenerate. Let

Hi = {zi = 0} , 0 ≤ i ≤ n,

Hn+1 =

{
n

∑
i=0

zi = 0

}
.

These n + 2 hyperplanes are in general position. Hence,

by applying Cartan’s Second Main Theorem, we obtain

Tg(r) ≤
n

∑
i=0

N[n]
g (r, Hi) + N[n]

g (r, Hn+1) + o(Tg(r)) ∥ .

(3.1)

By applying the First Main Theorem and Lemma

3.1, we get some estimates

Tg(r) = (s + bd) Tf (r) + O(1), (3.2)

N[n]
g (r, Hi) ≤ N[n]

f (r, {Qi = 0}) + N[n]
f (r, {Rd

i = 0})

≤ N f (r, {Qi = 0}) + n
d

N f (r, {Rd
i = 0})

≤ s Tf (r) + bn Tf (r, {Rd
i = 0}), (3.3)

N[n]
g (r, Hn+1) = N[n]

f (r, D). (3.4)

Then, by combining (3.1), (3.2), (3.3), (3.4), we obtain

(s + bd) Tf (r) ≤ (n + 1)(s + bn) Tf (r) + N[n]
f (r, D)

(3.5)

+ o(Tf (r)) ∥, (3.6)

which implies

[(s + bd) − (n + 1)(s + bn)] Tf (r) ≤ N[
f
n]
(r, D) + o(Tf (r)) ∥ . 

Remark 3.2. The inequality is meaningful if and only 

if the left-hand side is greater than zero, which means

(s + bd) − (n + 1)(s + bn) > 0.

4 Some corollaries

From the Main Theorem, we establish some corollaries 
about the algebraic degeneracy of entire curves.

Corollary 4.1. Let s, b, d be positive integers such that

(s + bd) − (n + 1)(s + bn) > 0. Let D be the same hy-
persurface in Theorem 1.1. Then, every holomorphic curve

f : C → CPn\D must be algebraically degenerate.

Proof. Suppose f is algebraically non-degenerate. By 
applying Theorem 1.1 for f and D, we have

[(s + bd) − (n + 1)(s + bn)] Tf (r) ≤ N[
f
n]
(r, D) + o(Tf (r)) ∥ .

Since f misses D, one has N[
f
n]
(r, D) = 0. Hence,

[(s + bd) − (n + 1)(s + bn)] Tf (r) ≤ o(Tf (r)) ∥ .

This is a contradiction since

(s + bd) − (n + 1)(s + bn) > 0.

So, f is algebraically degenerate.

Corollary 4.2. Let s, b, d be positive integers such that

(s + bd) − (n + 1)(s + bn) > 0. Let D be the same hy-
persurface in Theorem 1.1. Then, every holomorphic curve

f : C → CPn whose image intersects D with multiplicity at

least l >
n(s + bd)

(s + bd)− (n + 1)(s + bn)
must be algebraically

degenerate.
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Proof. Suppose f is algebraically non-degenerate. By

applying Theorem 1.1 and the First Main Theorem for f

and D, we have

[(s + bd)− (n + 1)(s + bn)] Tf (r)

≤ N[n]
f (r, D) + o(Tf (r)) ∥

≤ n N[1]
f (r, D) + o(Tf (r)) ∥

≤ n
l

N f (r, D) + o(Tf (r)) ∥

≤ n(s + bd)
l

Tf (r) + o(Tf (r)) ∥ .

This implies(
(s + bd)− (n + 1)(s + bn)

n(s + bd)
− 1

l

)
Tf (r) ≤ o(Tf (r)) ∥,

which gives a contradiction with

l >
n(s + bd)

(s + bd)− (n + 1)(s + bn)
.

Therefore, f must be algebraically degenerate.

Corollary 4.3. Let s, b, d be positive integers such that

(s+ bd)− (n+ 1)(s+ bn) > 0. Let D be the same hypersur-

face in Theorem 1.1. Then, we have the following truncated

defect relation

δ
[n]
f (D) ≤ (n + 1)(s + bn)

s + bd
.

Proof. First, we rewrite Theorem 1.1 as follows:

(s + bd) Tf (r)− N[n]
f (r, D) ≤ (n + 1)(s + bn) Tf (r)

+ o(Tf (r)) ∥ .

Then, by dividing both sides of the above inequal-

ity by (s + bd) Tf (r), one has

1−
N[n]

f (r, D)

(s + bd) Tf (r)
≤ (n + 1)(s + bn)

s + bd
+

o(Tf (r))
(s + bd) Tf (r)

∥ .

Now, let r → ∞, one has

1 − lim sup
r→∞

N[n]
f (r, D)

d Tf (r)
≤ lim inf

r→∞

(n + 1)(s + bn)
s + bd

+ lim inf
r→∞

o(Tf (r))
(s + bd) Tf (r)

.

Since lim inf
r→∞

o(Tf (r))
(s + bd) Tf (r)

= 0, we obtain

δ
[n]
f (D) ≤ (n + 1)(s + bn)

s + bd
.

Example 4.1. Consider the following holomorphic map

f : z ∈ C → (1 : ez : ecz) = (w0 : w1 : w2) ∈ CP2, where

c > 1 is an irrational number and D is the algebraic

curve defined as

Q0wd
0 + Q1wd

1 + Q2wd
2 = 0,

where d > 10 and Qi (0 ≤ i ≤ 2) are three conics.

Suppose that the family {Q0, Q1, Q2, L0, L1, L2} is in

general position, where Li = {wi = 0} (0 ≤ i ≤ 2).

By similar computations as in Example 2.3, we have

Tf (r) =
cr
π

. Since c is irrational, f is algebraically

non-degenerate. Hence, the Main Theorem yields:

(d − 10) Tf (r) ≤ N[2]
f (r, D) + o(Tf (r)) ∥, which implies

that
(d − 10)cr

π
≤ N[2]

f (r, D) + o(r) ∥. By Corollary 4.3,

we have the defect relation δ
[2]
f (D) ≤ 12

d+2 . Furthermore,

applying Corollaries 4.1, 4.2, we see that

(a) For any integer number d > 10, all holomorphic

curve g : C → CP2 \ D must be algebraically de-

generate;

(b) For arbitrary two integer numbers d, ℓ with d > 10

and ℓ >
2(d + 2)
d − 10

, all holomorphic curve g : C →

CP2 whose image intersects D with multiplicity at

least ℓ must be algebraically degenerate.
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