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Abstract. Salinity intrusion poses a threat to water security, agriculture, and livelihoods in the 

Vietnamese Mekong Delta (VMD), particularly under the combined pressures of climate change and 

upstream hydrological developments. Accurate short- to mid-term salinity forecasts are essential for 

proactive water resource management. This study evaluates the performance of two machine learning 

models—Random Forest Regression (RFR) and Support Vector Regression (SVR)—for salinity 

forecasting using long-term observational data (1996–2023) from 44 monitoring stations in the VMD. To 

capture temporal dynamics, multitemporal lag features (1, 10, 20, 30, and 60 days) were generated from 

observed salinity records. Bayesian optimization and time-series cross-validation were used for model 

tuning. Results show that SVR performs best for short-term forecasts (1–3 days), achieving R2 and NSE 

up to 0.927–0.928, MAE ≈ 0.824 g/L, and RMSE ≈ 1.858 g/L, while RFR provides more stable predictions 

over longer horizons (4–7 days), maintaining R2/NSE values of 0.627 to 0.766 with lower errors. 

Additionally, the 20-day lag windows yielded the most accurate results, likely reflecting the influence of 

tidal cycles. These findings highlight the importance of selecting appropriate models and temporal 

features for various forecast horizons, providing a data-driven framework to enhance early warning 

systems and support adaptive water resource management in the VMD. 

Keywords: Bayesian optimisation, machine learning, multitemporal lag features, salinity forecasting, 

Vietnamese Mekong Delta 

1 Introduction 

Salinity intrusion is a natural phenomenon 

commonly observed in coastal regions [1]. This 

refers to the inland intrusion of seawater through 

river estuaries. Under natural conditions, the 

extent and dynamics of salinity intrusion are 

primarily governed by local meteorological and 

hydrological factors, including tidal regimes, 

upstream river discharge, and precipitation. In 

low-lying deltaic regions, saline water penetrates 

more deeply inland, affecting a larger area. 

In recent years, the manifestations of salinity 

intrusion have become increasingly pronounced 

under climate change and human activities. 

Numerous deltas worldwide have experienced the 

increasing severity of this phenomenon. For 

instance, the average salinity in the coastal areas of 

Bangladesh increased by approximately 26% over 

35 years (1973–2009), adversely affecting various 
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localities [2], while in the neighboring Indian 

Bengal Delta, monitoring data show a sudden 

surge, with the salinity front shifting inland by 

roughly 20 km in the central delta zone [3], 

attributed to reduced freshwater discharge from 

the Ganges River, rising sea levels, and declining 

groundwater levels. These global observations 

underscore that salinity intrusion is not confined to 

a few regions but represents a widespread and 

escalating challenge for deltaic systems 

worldwide. 

In that context, the Vietnamese Mekong 

Delta (VMD), one of the most vulnerable and 

densely populated deltas, has exhibited similar 

patterns, with salinity intrusion causing 

increasingly severe socio-economic impacts [4, 5]. 

During the 2015–2016 dry season, salinity intrusion 

damaged nearly 160,000 hectares of rice fields, 

directly affected 200,000 individuals, and caused 

indirect hardship to millions, resulting in 

estimated economic losses exceeding 1 trillion 

VND. A similar event in 2019 affected 100,000 

hectares of crops and 320,000 people, leading to 

damage of 570 billion VND. In 2020, the salinity 

penetrated up to 100 km inland, severely 

disrupting 460,000 hectares of cropland and 

leaving 685,558 people across 10 provinces with 

insufficient freshwater for agriculture and 

domestic use. These recurring and increasingly 

severe impacts highlight the critical need for 

effective salinity forecasting tools to support 

proactive water resource management, 

agricultural planning, and livelihood protection in 

the region [6]. 

For forecasting salinity, conventional 

hydrodynamic and statistical models have 

traditionally been employed [7-9]. However, these 

approaches often encounter limitations, including 

high computational demands, extensive data 

requirements, and relatively low prediction 

accuracy in highly dynamic environments. 

Recently, machine learning (ML) techniques have 

emerged as powerful alternatives, demonstrating 

considerable potential in water resource 

forecasting because of their capability in handling 

nonlinear relationships, managing complex 

datasets, and delivering robust predictions with 

fewer assumptions and simplified 

parameterization [10]. This may lead to greater 

predictive accuracy even in highly dynamic water 

environments. Machine learning can infer 

relationships directly from large, diverse datasets 

without requiring extensive, predefined physical 

parameters typically required by traditional 

models. Furthermore, this data-driven approach 

significantly reduces computational costs, offering 

impractical real-time prediction capabilities for 

many computationally intensive hydrodynamic 

models. 

Among ML methods, Random Forest 

Regression (RFR) and Support Vector Regression 

(SVR) are notably effective because of their 

adaptability to nonlinear phenomena, and 

successful application in various hydrological 

forecasting tasks [11, 12]. Previous studies have 

highlighted the strength of these models in 

predicting hydrological variables, including 

rainfall and stream flow. Although several studies 

have examined salinity intrusion in the VMD, most 

have been restricted to limited spatial scales or 

have addressed different research questions [13, 

14], leaving a substantial gap in comprehensive 

forecasting approaches. Therefore, the potential of 

ML-based models for salinity intrusion forecasting 

– particularly those incorporating multiple 

temporal lags as input features to capture broader 

spatio-temporal dynamics – warrants further 

investigation in the context of the VMD. 

Therefore, this study aims to bridge this 

knowledge gap by evaluating the predictive power 

of the RFR and SVR models using multitemporal 

lag features to forecast daily salinity intrusion in 
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the VMD. Specifically, we assess model 

performance across different temporal windows 

(lag features of 1, 10, 20, 30, and 60 days) and 

various forecast horizons (from 1 to 7 days ahead). 

The outcomes of this research are expected to 

provide valuable insights into selecting 

appropriate forecasting strategies and enhancing 

early warning systems, thereby supporting 

sustainable water resource management and 

climate adaptation strategies in the region. 

2 Materials and methods 

2.1 Study area 

The Vietnamese Mekong Delta, encompassing 

approximately 40,000 km² in the southernmost part 

of Vietnam, represents the final segment of the 

Mekong River before it discharges into the East 

Vietnam Sea (Fig. 1). This region is characterized 

by a complex network of rivers and canals that 

support diverse and dynamic hydrological 

processes. Home to more than 19 million people 

across 13 provinces, the VMD is a vital hub for 

agriculture and aquaculture, contributing 

approximately 50% of the nation’s rice output and 

60% of its aquatic products [15]. 

Despite its productivity, the VMD is 

increasingly vulnerable to environmental 

challenges. Climate change-induced sea-level rise, 

upstream hydropower development, and land 

subsidence have intensified salinity intrusion, 

particularly during the dry season [16]. These 

intrusions threaten freshwater availability, 

agricultural sustainability, and the livelihoods of 

local communities. Addressing these challenges 

necessitates integrated water resource 

management and adaptive strategies to ensure the 

region’s resilience and continued contribution to 

national food security. 

 

Fig. 1. Location map of Vietnamese Mekong Delta and salinity observation stations
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2.2 Data collection and preprocessing 

This study utilizes hourly salinity records collected 

from 44 hydrological monitoring stations located 

across the coastal regions of the VMD from 1996 to 

2023. The stations are spatially distributed to cover 

key salinity-prone areas (see Fig. 1). The raw data 

were compiled from various sources and 

underwent several preprocessing steps (i.e., data 

cleaning, formatting, outlier removal, and data 

normalization) to ensure consistency and 

suitability for model development. Specifically, the 

daily maximum salinity values were extracted 

from the hourly records, formatted into time series 

data structures, and screened to remove outliers. 

Importantly, salinity observations were 

predominantly available during the dry season 

(December to June), when saltwater intrusion is 

most severe. In contrast, salinity is typically not 

measured during the wet season, resulting in 

temporal gaps in the dataset. 

Given the non-continuous nature of field 

measurements – usually recorded every two hours 

but not daily – substantial gaps (e.g., missing days 

or weeks) are present in the time series. To 

generate high-quality training data for machine 

learning models, only continuous data segments 

meeting predefined lookback window lengths (i.e., 

1, 10, 20, 30, and 60 days) were retained. 

Importantly, no gap-filling or interpolation 

methods were applied; the analysis relies solely on 

the observed values. While this may reduce the 

total volume of usable data, it ensures that the 

dataset is free from uncertainties related to 

imputation and better reflects the original 

measurement conditions. 

For ensuring comparability across input 

features and improving training dynamics, the 

salinity data were normalized by using 

MinMaxScaler. This min-max normalization 

technique linearly scales values to the [0, 1] range 

based on the minimum and maximum observed 

values of each variable. Multitemporal lag features 

were then generated to capture temporal 

dependencies at varying time intervals that are 

essential for forecasting tasks. Finally, the prepared 

dataset was partitioned into three subsets: 70% for 

model training, 20% for validation, and 10% for 

testing. This partitioning strategy supports robust 

model evaluation and helps prevent overfitting. 

2.3 Machine learning models 

This study evaluated the predictive performance of 

two state-of-the-art machine learning models: 

Random Forest Regression and Support Vector 

Regression, both of which have demonstrated high 

effectiveness in modelling nonlinear and 

multitemporal environmental phenomena. 

Random forest regression  

Random forest regression, introduced by Breiman, 

is an ensemble learning technique that builds 

various decision trees during training and outputs 

the average prediction of the individual trees [17]. 

Each tree is trained on a randomly sampled 

bootstrap subset of the data, and at each node, a 

random subset of features is considered for 

splitting. This randomized construction helps 

mitigate overfitting and improves model 

generalizability. Random forest regression has 

been widely applied in environmental modelling 

because of its robustness to noise, ability to capture 

complex nonlinear interactions, and tolerance to 

missing or correlated input features [18, 19]. In 

salinity forecasting, RFR is particularly suitable 

because it can model the intricate relationships 

between lagged hydrological variables. 

This study implements RFR using the scikit-

learn library. To maximize its predictive accuracy 

and control for model complexity, its crucial 

hyperparameters were systematically tuned. We 

employed Bayesian optimization for this task, 
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which is a sample-efficient method that 

intelligently searches for optimal parameter values 

by building a probabilistic model [20] of the 

objective function (e.g., R2 score). For ensuring that 

the evaluation was robust and respected the 

temporal nature of the salinity data, this 

optimization was coupled with a time series cross-

validation scheme by using five consecutive splits 

(n_splits = 5). This cross-validation approach is 

critical as it preserves the chronological order of 

observations in each split, preventing data leakage 

and yielding a more realistic estimate of the 

model’s generalization performance on unseen 

future data [21]. 

Support vector regression 

Support vector regression is a kernel-based 

method derived from the theory of support vector 

machines (SVMs), and adapted for regression tasks 

[22, 23]. Support vector regression seeks a function 

that approximates the target values within an ε-

insensitive tube, while minimizing a regularized 

loss that controls model complexity. This structural 

risk minimization principle offers powerful 

generalizability, especially when the amount of 

training data is limited. 

To handle the nonlinear relationships, the 

SVR model employs the radial basis function (RBF) 

kernel, which implicitly maps input features into a 

high-dimensional space where linear regression 

becomes feasible [24]. Evidence indicates that this 

kernel outperforms others in terms of efficiency 

and accuracy when applied to regression problems 

[25, 26]. Besides, the model’s hyperparameters, 

including the penalty term C, the kernel width γ, 

and the margin ϵ, are also optimized via Bayesian 

optimization and time series cross-validation. 

Support vector regression has proven 

effective in prior hydrological studies and is well-

suited for capturing time-lagged dependencies and 

threshold effects in salinity dynamics [27, 28]. 

However, its computational cost increases with 

data size, and its performance is sensitive to 

parameter settings, necessitating careful tuning. 

2.4 Evaluation metrics 

For evaluating model performance, four widely 

accepted metrics are used: the root mean square 

error (RMSE), the mean absolute error (MAE), the 

coefficient of determination (R²), and the Nash-

Sutcliffe model efficiency coefficient (NSE) [7]. 

These metrics collectively measure the models’ 

accuracy, precision, and explanatory power, 

enabling a comprehensive comparison of the 

forecasting scenarios across different lag intervals 

and prediction horizons. The root mean square 

error and MAE examine the difference between 

forecasted and observed values, ranging from 0 to 

positive infinity, with the lower values indicating 

better performance. The coefficient of 

determination ranges from 0 to 1.0, with higher 

values indicating a better model fit, whereas the 

NSE varies from negative infinity to 1.0, with a 

value of 1.0 representing the optimal fit [29]. 

Although R2 has the advantage of being easily 

interpretable and consistently bounded between 0 

and 1.0, the NSE provides a critical reference point 

at 0, where NSE values below 0 indicate that the 

means of the observed data serve as a better 

predictor than the model forecasting. Formulas to 

calculate those metrics are described as follows: 
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where n is the number of samples; 𝑦𝑖, 𝑦̂𝑖, and 𝑦̅ are 

the observed, forecasted, and mean salinity values, 

respectively. 
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2.5 Modelling methodology 

This study employed a data-driven modelling 

framework to forecast salinity levels in the VMD 

via machine learning techniques. The 

methodological process is structured into four 

main stages (Fig. 2): data collection, data 

processing, model training, and performance 

evaluation. 

 

 

Fig. 2. Overall workflow for evaluating salinity predictive performance of RFR and SVR models 

Step 1: Salinity observations from 44 

monitoring stations across the VMD’s coastal area, 

spanning from 1996 to 2023, were compiled as the 

primary dataset for model development and 

evaluation. The raw records included sub-daily 

measurements, which were aggregated into daily 

maxima to establish a consistent temporal 

resolution for the target variable. 

Step 2: Each station’s time series was first 

processed independently to ensure temporal 

integrity. Outliers were removed; values were 

normalized, and the series were filtered to retain 

only continuous daily segments sufficient to 

accommodate the specified lag windows (1, 10, 20, 

30, and 60 days) and forecast horizons (1 to 7 days). 

After this station-specific preprocessing, the 

datasets were chronologically partitioned into 

training (70%), validation (20%), and testing (10%) 

subsets. Corresponding subsets from all 44 stations 

were then concatenated, and lagged variables were 

generated, allowing each time-ordered sample 

from any station to serve as an independent 

instance for model training. 

Step 3: Model training was performed via 

the training subset, and hyperparameter 

optimization was carried out via Bayesian 

optimization in conjunction with 5-fold time series 

cross-validation. This strategy enabled the models 

to capture salinity dynamics and temporal patterns 

adaptively. Each model was trained and evaluated 

across seven forecast horizons from 1 to 7 days. 
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Step 4: Model performance was 

quantitatively assessed via four statistical metrics: 

MAE, RMSE, NSE, and R². These metrics were 

applied to the testing dataset to evaluate the 

generalization ability of the models under varying 

forecast horizons and lag scenarios. The best 

validated model is used to predict salinity 

concentrations at the analyzed stations. 

3 Results 

3.1 Data exploration 

The dataset comprises daily records of maximum 

salinity collected from 44 monitoring stations 

across the coastal areas of the VMD, with values 

ranging from 0.025 to 48.2 g/L (mean = 9.20 g/L; 

median = 6.3 g/L; SD = 8.89 g/L), as illustrated in 

Fig. 3a. The positively skewed distribution reflects 

substantial spatial and temporal variability, from 

persistently fresh conditions at upstream stations 

(<1 g/L) to extreme values exceeding 40 g/L at 

coastal sites (Fig. 3b). These high-end observations, 

although flagged as statistical outliers in boxplot 

diagnostics, are hydrologically meaningful and 

were retained to capture the full extent of seawater 

intrusion. Together, these statistics underscore the 

diverse hydrological regimes across the 

monitoring network and provide a robust basis for 

evaluating the predictive performance of machine 

learning models under varying conditions. 

In addition to spatial variability, temporal 

configuration also plays a crucial role. In 

particular, the choice of lag window and forecast 

horizon directly affects the number of usable 

samples, which, in turn, constrains the model 

training and evaluation. Table 1 presents the 

number of samples available for model training, 

validation, and testing across different lag window 

configurations. Increasing the lag window reduced 

the usable samples, primarily because it excluded 

the time steps that lacked a continuous data record. 

However, the observations among the designed 

lag windows have no notable imbalance in model 

training, validation, and testing. 

The configuration with a 1-day lag retained the 

largest sample size, with training samples ranging 

from 15,875 to 51,757, validation samples from 

4,533 to 14,794, and testing samples from 2,280 to 

7,417. This is the baseline scenario, where most of 

the original dataset is preserved. In contrast, 

expanding the lag window to 10, 20, and 30 days 

resulted in a substantial decline in available 

samples, with training data typically ranging from 

approximately 14,948 to 15,640 samples. The 

validation and testing subsets also showed 

minimal variation. When the lag was further 

extended to 60 days, the dataset size reduced to its 

smallest value, with training sets ranging from 

13,475 to 14,144, validation sets ranging from 3,802 

to 4,043, and testing sets ranging from 1,884 to 

2,036.

Table 1. Number of available samples corresponding to the lag window 

Lag window Training sample Validation sample Testing sample 

1 day 15,875–51,757 4,533–14,794 2,280–7,417 

10 days 15,539–15,640 4,429–4,468 2,222–2,251 

20 days 15,368–15,474 4,372–4,422 2,189–2,225 

30 days 14,948–15,190 4,247–4,339 2,121–2,186 

60 days 13,475–14,144 3,802–4,043 1,884–2,036 
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Fig. 3. Distribution of maximum daily salinity across monitoring stations in study areas (a); histograms (b); time 

series data (c) of representative upstream (Dong Tam), transitional (Hoa Binh), and coastal (Ganh Hao) stations, 

illustrating distinct spatial patterns

3.2 Model performance evaluation 

The predictive performance of the RFR and SVR 

models was assessed across a range of lag features 

and forecast horizons to investigate the influence 

of the look-back window length and prediction 

step on forecasting accuracy. Seventy modelling 

scenarios were evaluated, corresponding to 

combinations of five lag windows and seven 

forecast steps (i.e., 35 scenarios for each model). 

During the training phase, both models 

consistently achieved high R² and NSE across all 

lag-horizon combinations, indicating robust fitting 

to the observed data. However, their error 

dynamics varied substantially with the forecast 

length. The SVR model demonstrated superior 

predictive accuracy for shorter forecasts (1–2 days) 

when longer lag windows (20–60 days) were 

applied. Under these conditions, the lowest 

training errors were obtained, with minimum 

MAE and RMSE values of 0.787 g/L and 1.385 g/L, 
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respectively. In contrast, the RFR exhibited greater 

robustness over extended forecast horizons. 

Although slightly less accurate for the short-term 

predictions, RFR maintains higher R2/NSE and 

smaller error magnitudes as the lead time 

increases. For instance, at a 60-day lag and a 7-day 

forecast step, RFR achieved an R2 of 0.93 and NSE 

of 0.928, with RMSE of 1.802 g/L and MAE of 1.145 

g/L, outperforming SVR (RMSE = 2.874 g/L and 

MAE = 1.736 g/L). Overall, the highest training 

performance for both models was observed at a 

forecast step of 1 day, where SVR and RFR 

achieved R² values of 0.955 (lag window 30 days) 

and 0.952 (lag window 60 days), respectively. 

In the testing phase, both models also 

exhibited strong generalizability. For shorter 

forecast steps (1–2 days ahead), R² and NSE values 

exceeded 0.85 in multiple scenarios, with the MAE 

typically remaining around 1.0 g/L. The best test 

performance (R² ≈ NSE ≈ 0.928) was recorded at a 

lag of 1 and a step of 1 for both models (Fig. 4). As 

the forecast horizon extended, a gradual decline in 

R² and NSE was observed. The SVR maintained an 

advantage in certain mid-range scenarios—for 

example, attaining R² and NSE of 0.813 and 0.806, 

respectively, at a lag of 10 days and a forecast step 

of 3 days. However, RFR showed more consistent 

performance over longer forecast steps (4–7 days), 

particularly at a lag of 30 days, where R² and NSE 

remained above 0.62 even at step 7. In contrast, the 

performance of SVR deteriorated more noticeably 

at extended horizons, especially when longer lag 

features (e.g., 60 days) were used. 

Notably, R2 and NSE witnessed nearly 

identical patterns across the lag-horizon 

combinations, confirming their strong agreement 

in evaluating model efficiency. The coefficient of 

determination emphasizes the proportion of 

variance explained, whereas NSE provides a more 

sensitive measure of predictive reliability relative 

to the mean observation. In both senses, RFR 

consistently outperforms SVR for medium to long 

horizons, while SVR slightly surpassed RFR in 

very short forecasts. This balance implies that 

while SVR effectively captures shorter 

fluctuations, RFR offers greater generalization and 

stability, making it more suitable for operational 

salinity forecasting over multiple-day horizons. 
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Fig. 4. Performance heatmaps of RFR and SVR models across different lag windows and forecast horizons  

Each cell represents the performance score for a specific combination of a lag window (y-axis) and a forecast horizon 

(x-axis). The color intensity corresponds to the metric value, with higher R²/NSE and lower MAE/RMSE indicating 

better model performance. 
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Fig. 5. Multistep salinity forecasts at Hoa Binh station via RFR and SVR with a 20-day lag window 

Each subplot represents one forecast horizon, with the observed salinity (blue line) and predicted salinity (red 

dashed line) plotted over time (i.e., illustrated over a representative period from the testing dataset). Salinity is 

expressed in g/L. Hoa Binh station represents a transitional site where the 20-day lag gave the best performance.



Le Van Quyen et al. 

 

152  

 

4 Discussion 

4.1 Optimal lag features 

The results indicate that both models achieved 

their highest predictive performance when using 

lag windows of 20 days. In contrast, shorter 

configurations such as 1-day and 10-day lags 

yielded strong performance for short-term 

forecasts (e.g., next-day predictions), but their 

accuracy declined substantially as the prediction 

horizon increased. This degradation is likely due to 

insufficient historical context in shorter lags, which 

limits the model’s ability to generalize temporal 

patterns in salinity fluctuations – a phenomenon 

also noted in hydrological forecasting studies [30, 

31]. 

Interestingly, the 20-day lag window, which 

roughly corresponds to one tidal cycle, provided 

accurate next-day predictions and sustained 

performance across multiple lead times. Although 

accuracy gradually declined as the forecast step 

increased, the reduction was smooth and stable, 

suggesting that this lag range strikes a suitable 

balance between information richness and noise 

suppression. Similar findings were reported by Ma 

et al., who demonstrated that incorporating 

historical data in the range of 15 to 30 days 

significantly improved flood forecasting accuracy 

via a deep learning framework [32]. Chen et al. also 

highlighted the effectiveness of incorporating 

tidal-scale temporal features in river level 

forecasting under typhoon conditions [33]. These 

studies reinforce that lag windows aligned with 

dominant hydro-tidal cycles can enhance the 

model’s ability to capture periodic dynamics and 

improve the robustness of multistep prediction. 

Surprisingly, extending the lag window 

from 30 to 60 days—initially assumed to provide 

more comprehensive historical information—did 

not improve model performance. The accuracy 

gains were marginal and comparable with those 

from the 1-day and 10-day configurations. This 

outcome suggests that excessive lag depth may 

introduce redundant or noisy information, thereby 

diluting relevant signals and potentially 

compromising the model’s predictive ability [32]. 

In addition, as shown in Table 1, a longer lag 

substantially reduces the available samples, which 

may limit the models’ capacity to learn robust 

patterns. Thus, the combined effects of redundant 

information and reduced sample size likely explain 

the lack of improvement with the longest lag 

window. 

4.2 Comparative model performance 

Results from Section 3.2 also showed that in this 

study, SVR exhibited greater performance in short-

term forecasts (1–3 days), whereas RFR 

demonstrated better stability over extended 

prediction horizons (4–7 days). This distinction 

aligns with findings from prior hydrological 

studies. For example, Bargam et al. reported that 

SVR achieved lower RMSE and higher NSE scores 

than did RFR when applied to daily streamflow 

prediction in a data-scarce basin, suggesting SVR’s 

ability to capture high-resolution, short-term 

dynamics with fewer training samples [34]. 

The superior short-term performance of SVR 

may be attributed to its kernel-based learning 

mechanism, which is well-suited for capturing 

local nonlinearities in time series data without 

overfitting. However, as the forecast horizon 

increases, SVR’s reliance on recent observations 

may limit its capacity to model broader temporal 

dependencies and compound errors across steps. 

In contrast, RFR, as an ensemble of decision trees, 

benefits from its ability to generalize over longer 

historical patterns and mitigate overfitting by 

averaging across multiple estimators. These 

differences in model behavior have also been 

observed in applications such as drought or 

streamflow forecasting, where SVR typically excels 
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in short-term prediction. In contrast, RFR 

maintains greater stability over extended 

timeframes [35, 36]. 

The salinity forecasting results at the Hoa 

Binh station with a 20-day lag window (Fig. 5) 

clearly illustrate the behavioral differences 

between the RFR and SVR models across various 

forecast horizons. In short-term forecasts (Steps 1–

3), SVR can follow observed trends, particularly 

during sharp increases and decreases in data. 

However, as the forecast horizon extends (Steps 4–

7), SVR tends to smooth the predictions and 

attenuate amplitude variations. In contrast, RFR 

maintains the overall trend and demonstrates 

greater temporal stability. These findings are 

consistent with the quantitative results presented 

in Section 4.2, where SVR outperforms RFR in 

short-term forecasting because its kernel-based 

learning mechanism effectively captures local 

nonlinearities. Conversely, RFR, with its ensemble 

of decision trees and stronger generaliration 

capacity, performed more robustly over longer 

prediction windows. 

This pattern is not unique to Hoa Binh; 

similar observations were made at stations such as 

Vam Kenh, Tra Kha, and Ben Trai. Support vector 

regression maintained relatively high short-term 

accuracy at locations with substantial variability or 

data gaps, whereas RFR exhibited greater 

resilience and consistency over extended forecast 

steps. 

4.3 Limitations and future works 

Despite the encouraging performance of both 

machine learning models in forecasting salinity 

across the VMD, this study is subject to certain 

limitations. First, the training dataset was 

constructed by aggregating data from all stations, 

which may have led to model confusion regarding 

station-specific patterns, potentially reducing 

predictive accuracy. This limitation arose from the 

lack of sufficient data at individual stations to train 

the ML separately. In future work, we plan to 

develop more advanced ML and deep learning 

models to examine further the benefits and 

drawbacks of using combined versus individual 

datasets. Second, the models were trained on 

processed data without applying imputation or 

decomposition techniques. While this was a 

deliberate choice to assess model performance 

under minimal assumptions, it undoubtedly 

constrained the predictive potential of both 

models. 

Future studies will focus on improving 

model performance by strategically selecting 

training data tailored to each station’s 

characteristics. Additionally, appropriate 

preprocessing techniques should be applied to 

exploit better the temporal and statistical features 

of the salinity data. Integrating other 

hydrometeorological variables, such as rainfall, 

streamflow, and water levels, will also be explored. 

Finally, the authors intend to investigate deep 

learning models and ensemble techniques to 

increase forecasting accuracy and robustness.  

5 Conclusions 

This study evaluated the salinity forecasting 

performance of random forest regression and 

support vector regression by using multitemporal 

lag features across different forecast horizons in 

the Vietnamese Mekong Delta. The results 

revealed that both models achieved high 

predictive accuracy, particularly with a 20-day lag 

window. Across the four evaluation metrics (R2, 

NSE, MAE, and RMSE), support vector regression 

demonstrated superior short-term forecasting 

ability (1–3 days), whereas random forest 

regression exhibited more stable and reliable 

performance at longer forecast horizons (4–7 days). 

These differences are consistent with the inherent 

characteristics of each algorithm: support vector 
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regression’s strength in capturing local 

nonlinearities versus random forest regression’s 

robustness in generalizing over extended temporal 

contexts. 

Extending the lag window to 30–60 days 

failed to improve accuracy, suggesting excessive 

historical data may introduce noise. The findings 

underscore the importance of selecting appropriate 

lag structures for effective multistep forecasting. 

While both models performed well when 

aggregated data were used, further improvements 

can be achieved by incorporating station-specific 

training, feature preprocessing, and integrating 

additional hydrometeorological variables. Overall, 

the proposed machine learning framework offers a 

promising data-driven approach for supporting 

early warning systems and adaptive water 

resource management in the Vietnamese Mekong 

Delta. 
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