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Abstract. Salinity intrusion poses a threat to water security, agriculture, and livelihoods in the
Vietnamese Mekong Delta (VMD), particularly under the combined pressures of climate change and
upstream hydrological developments. Accurate short- to mid-term salinity forecasts are essential for
proactive water resource management. This study evaluates the performance of two machine learning
models—Random Forest Regression (RFR) and Support Vector Regression (SVR)—for salinity
forecasting using long-term observational data (1996-2023) from 44 monitoring stations in the VMD. To
capture temporal dynamics, multitemporal lag features (1, 10, 20, 30, and 60 days) were generated from
observed salinity records. Bayesian optimization and time-series cross-validation were used for model
tuning. Results show that SVR performs best for short-term forecasts (1-3 days), achieving R? and NSE
up to 0.927-0.928, MAE = 0.824 g/L, and RMSE =~ 1.858 g/L, while RFR provides more stable predictions
over longer horizons (4-7 days), maintaining R?’/NSE values of 0.627 to 0.766 with lower errors.
Additionally, the 20-day lag windows yielded the most accurate results, likely reflecting the influence of
tidal cycles. These findings highlight the importance of selecting appropriate models and temporal
features for various forecast horizons, providing a data-driven framework to enhance early warning
systems and support adaptive water resource management in the VMD.

Keywords: Bayesian optimisation, machine learning, multitemporal lag features, salinity forecasting,
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1 Introduction

Salinity intrusion is a natural phenomenon
commonly observed in coastal regions [1]. This
refers to the inland intrusion of seawater through
river estuaries. Under natural conditions, the
extent and dynamics of salinity intrusion are
primarily governed by local meteorological and
hydrological factors, including tidal regimes,

upstream river discharge, and precipitation. In
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low-lying deltaic regions, saline water penetrates

more deeply inland, affecting a larger area.

In recent years, the manifestations of salinity
intrusion have become increasingly pronounced
under climate change and human activities.
Numerous deltas worldwide have experienced the
increasing severity of this phenomenon. For
instance, the average salinity in the coastal areas of
Bangladesh increased by approximately 26% over

35 years (1973-2009), adversely affecting various
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localities [2], while in the neighboring Indian
Bengal Delta, monitoring data show a sudden
surge, with the salinity front shifting inland by
roughly 20 km in the central delta zone [3],
attributed to reduced freshwater discharge from
the Ganges River, rising sea levels, and declining
groundwater levels. These global observations
underscore that salinity intrusion is not confined to
a few regions but represents a widespread and
escalating deltaic

challenge  for systems

worldwide.

In that context, the Vietnamese Mekong
Delta (VMD), one of the most vulnerable and
densely populated deltas, has exhibited similar
patterns, with salinity intrusion causing
increasingly severe socio-economic impacts [4, 5].
During the 2015-2016 dry season, salinity intrusion
damaged nearly 160,000 hectares of rice fields,
directly affected 200,000 individuals, and caused
hardship
estimated economic losses exceeding 1 trillion
VND. A similar event in 2019 affected 100,000
hectares of crops and 320,000 people, leading to
damage of 570 billion VND. In 2020, the salinity

penetrated up to 100 km inland, severely

indirect to millions, resulting in

disrupting 460,000 hectares of cropland and
leaving 685,558 people across 10 provinces with
insufficient freshwater for agriculture and
domestic use. These recurring and increasingly
severe impacts highlight the critical need for
effective salinity forecasting tools to support
water resource

proactive management,

agricultural planning, and livelihood protection in

the region [6].
For forecasting salinity, conventional
hydrodynamic and statistical models have

traditionally been employed [7-9]. However, these
approaches often encounter limitations, including
high computational demands, extensive data
requirements, and relatively low prediction

accuracy in highly dynamic environments.
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Recently, machine learning (ML) techniques have
emerged as powerful alternatives, demonstrating
considerable  potential in water resource
forecasting because of their capability in handling
nonlinear relationships, managing complex
datasets, and delivering robust predictions with
fewer assumptions and simplified
parameterization [10]. This may lead to greater
predictive accuracy even in highly dynamic water
Machine

relationships directly from large, diverse datasets

environments. learning can infer
without requiring extensive, predefined physical
parameters typically required by traditional
models. Furthermore, this data-driven approach
significantly reduces computational costs, offering
impractical real-time prediction capabilities for
many computationally intensive hydrodynamic

models.

Among ML methods, Random Forest
Regression (RFR) and Support Vector Regression
(SVR) are notably effective because of their
adaptability

successful application in various hydrological

to nonlinear phenomena, and
forecasting tasks [11, 12]. Previous studies have
highlighted the strength of these models in
predicting hydrological variables, including
rainfall and stream flow. Although several studies
have examined salinity intrusion in the VMD, most
have been restricted to limited spatial scales or
have addressed different research questions [13,
14], leaving a substantial gap in comprehensive
forecasting approaches. Therefore, the potential of
ML-based models for salinity intrusion forecasting
— particularly those incorporating multiple
temporal lags as input features to capture broader
spatio-temporal dynamics - warrants further

investigation in the context of the VMD.

Therefore, this study aims to bridge this
knowledge gap by evaluating the predictive power
of the RFR and SVR models using multitemporal

lag features to forecast daily salinity intrusion in
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the VMD.
performance across different temporal windows
(lag features of 1, 10, 20, 30, and 60 days) and

various forecast horizons (from 1 to 7 days ahead).

Specifically, we assess model

The outcomes of this research are expected to

provide valuable insights into selecting
appropriate forecasting strategies and enhancing
early warning systems, thereby supporting
sustainable water resource management and

climate adaptation strategies in the region.

2 Materials and methods

21 Study area

The Vietnamese Mekong Delta, encompassing
approximately 40,000 km? in the southernmost part
of Vietnam, represents the final segment of the
Mekong River before it discharges into the East
Vietnam Sea (Fig. 1). This region is characterized

by a complex network of rivers and canals that

support diverse and dynamic hydrological
processes. Home to more than 19 million people
across 13 provinces, the VMD is a vital hub for
agriculture and aquaculture, contributing
approximately 50% of the nation’s rice output and

60% of its aquatic products [15].

Despite its productivity, the VMD is

increasingly  vulnerable to  environmental
challenges. Climate change-induced sea-level rise,
upstream hydropower development, and land
subsidence have intensified salinity intrusion,
particularly during the dry season [16]. These
intrusions  threaten freshwater availability,
agricultural sustainability, and the livelihoods of
local communities. Addressing these challenges
necessitates integrated water resource
management and adaptive strategies to ensure the
region’s resilience and continued contribution to

national food security.
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Fig. 1. Location map of Vietnamese Mekong Delta and salinity observation stations
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2.2 Data collection and preprocessing

This study utilizes hourly salinity records collected
from 44 hydrological monitoring stations located
across the coastal regions of the VMD from 1996 to
2023. The stations are spatially distributed to cover
key salinity-prone areas (see Fig. 1). The raw data
were compiled from various sources and
underwent several preprocessing steps (i.e., data
cleaning, formatting, outlier removal, and data
normalization) to ensure consistency and
suitability for model development. Specifically, the
daily maximum salinity values were extracted
from the hourly records, formatted into time series

data structures, and screened to remove outliers.

Importantly, salinity observations were
predominantly available during the dry season
(December to June), when saltwater intrusion is
most severe. In contrast, salinity is typically not
measured during the wet season, resulting in

temporal gaps in the dataset.

Given the non-continuous nature of field
measurements — usually recorded every two hours
but not daily — substantial gaps (e.g., missing days
or weeks) are present in the time series. To
generate high-quality training data for machine
learning models, only continuous data segments
meeting predefined lookback window lengths (i.e.,
1, 10, 20, 30, and 60 days) were retained.
Importantly, no gap-filling or interpolation
methods were applied; the analysis relies solely on
the observed values. While this may reduce the
total volume of usable data, it ensures that the
dataset is free from uncertainties related to
reflects

imputation and Dbetter the original

measurement conditions.

For ensuring comparability across input
features and improving training dynamics, the
salinity ~ data
MinMaxScaler.  This

technique linearly scales values to the [0, 1] range

were normalized by using

min-max normalization
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based on the minimum and maximum observed
values of each variable. Multitemporal lag features
were then generated to capture temporal
dependencies at varying time intervals that are
essential for forecasting tasks. Finally, the prepared
dataset was partitioned into three subsets: 70% for
model training, 20% for validation, and 10% for
testing. This partitioning strategy supports robust

model evaluation and helps prevent overfitting.

2.3  Machine learning models

This study evaluated the predictive performance of
two state-of-the-art machine learning models:
Random Forest Regression and Support Vector
Regression, both of which have demonstrated high
nonlinear and

effectiveness in modelling

multitemporal environmental phenomena.

Random forest regression

Random forest regression, introduced by Breiman,
is an ensemble learning technique that builds
various decision trees during training and outputs
the average prediction of the individual trees [17].
Each tree is trained on a randomly sampled
bootstrap subset of the data, and at each node, a
random subset of features is considered for
splitting. This randomized construction helps
mitigate overfitting and improves model
generalizability. Random forest regression has
been widely applied in environmental modelling
because of its robustness to noise, ability to capture
complex nonlinear interactions, and tolerance to
missing or correlated input features [18, 19]. In
salinity forecasting, RFR is particularly suitable
because it can model the intricate relationships

between lagged hydrological variables.

This study implements RFR using the scikit-
learn library. To maximize its predictive accuracy
and control for model complexity, its crucial
hyperparameters were systematically tuned. We

employed Bayesian optimization for this task,
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method that
intelligently searches for optimal parameter values
by building a probabilistic model [20] of the

objective function (e.g., R? score). For ensuring that

which is a sample-efficient

the evaluation was robust and respected the
temporal nature of the salinity data, this
optimization was coupled with a time series cross-
validation scheme by using five consecutive splits
(n_splits = 5). This cross-validation approach is
critical as it preserves the chronological order of
observations in each split, preventing data leakage
and yielding a more realistic estimate of the
model’s generalization performance on unseen

future data [21].

Support vector regression

Support vector regression is a kernel-based
method derived from the theory of support vector
machines (5VMs), and adapted for regression tasks
[22, 23]. Support vector regression seeks a function
that approximates the target values within an e-
insensitive tube, while minimizing a regularized
loss that controls model complexity. This structural
risk minimization principle offers powerful
generalizability, especially when the amount of

training data is limited.

To handle the nonlinear relationships, the
SVR model employs the radial basis function (RBF)
kernel, which implicitly maps input features into a
high-dimensional space where linear regression
becomes feasible [24]. Evidence indicates that this
kernel outperforms others in terms of efficiency
and accuracy when applied to regression problems
[25, 26]. Besides, the model’s hyperparameters,
including the penalty term C, the kernel width v,
and the margin ¢, are also optimized via Bayesian

optimization and time series cross-validation.

Support vector regression has proven
effective in prior hydrological studies and is well-
suited for capturing time-lagged dependencies and
threshold effects in salinity dynamics [27, 28].

However, its computational cost increases with
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data size, and its performance is sensitive to

parameter settings, necessitating careful tuning,.

2.4  Evaluation metrics

For evaluating model performance, four widely
accepted metrics are used: the root mean square
error (RMSE), the mean absolute error (MAE), the
coefficient of determination (R?), and the Nash-
Sutcliffe model efficiency coefficient (NSE) [7].
These metrics collectively measure the models’
accuracy, precision, and explanatory power,
enabling a comprehensive comparison of the
forecasting scenarios across different lag intervals
and prediction horizons. The root mean square
error and MAE examine the difference between
forecasted and observed values, ranging from 0 to
positive infinity, with the lower values indicating
better =~ performance. @ The  coefficient of
determination ranges from 0 to 1.0, with higher
values indicating a better model fit, whereas the
NSE varies from negative infinity to 1.0, with a
value of 1.0 representing the optimal fit [29].
Although R? has the advantage of being easily
interpretable and consistently bounded between 0
and 1.0, the NSE provides a critical reference point
at 0, where NSE values below 0 indicate that the
means of the observed data serve as a better
predictor than the model forecasting. Formulas to

calculate those metrics are described as follows:
1 n

RMSE = —Z (9i — yi)?
n i=1

1 n
MAE=—Z 19t — yi|
n i=1

Y (ViP) — 21 Vi 2ieq i
J(nzzglyf — Ey)R)(n N 57 — (2502

L, @i — yD)?
i (i = yi)?

R? =

NSE =1-

where 7 is the number of samples; yi,yi,and y are
the observed, forecasted, and mean salinity values,

respectively.
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2.5 Modelling methodology main stages (Fig. 2): data collection, data

This study employed a data-driven modelling processing, model training, and performance

.. . evaluation.
framework to forecast salinity levels in the VMD
via  machine learning  techniques. The
methodological process is structured into four
. Salinity Data
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Fig. 2. Overall workflow for evaluating salinity predictive performance of RFR and SVR models

datasets were chronologically partitioned into
training (70%), validation (20%), and testing (10%)
subsets. Corresponding subsets from all 44 stations

Step 1: Salinity observations from 44
monitoring stations across the VMD’s coastal area,

spanning from 1996 to 2023, were compiled as the

primary dataset for model development and were then concatenated, and lagged variables were

evaluation. The raw records included sub-daily generated, allowing each time-ordered sample

. . . f tati t ind dent
measurements, which were aggregated into daily rom any station fo setve as an independen

. . . inst f del training.
maxima to establish a consistent temporal nstance for model tating

resolution for the target variable. Step 3: Model training was performed via

Step 2: Each station’s time series was first the  training  subset, and  hyperparameter

. optimization was carried out via Bayesian
processed independently to ensure temporal p y

. . . optimization in conjunction with 5-fold time series
integrity. Outliers were removed; values were

normalized, and the series were filtered to retain cross-validation. This strategy enabled the models

. . . . t t linity d i dt 1 patt:
only continuous daily segments sufficient to O capture sainity dynamics and temporal patietns

accommodate the specified lag windows (1, 10, 20, adaptively. Each model was trained and evaluated

30, and 60 days) and forecast horizons (1 to 7 days). across seven forecast horizons from 1 to 7 days.

After this station-specific preprocessing, the
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Step 4: Model
quantitatively assessed via four statistical metrics:
MAE, RMSE, NSE, and R2. These metrics were
applied to the testing dataset to evaluate the

performance  was

generalization ability of the models under varying
forecast horizons and lag scenarios. The best
validated model is used to predict salinity

concentrations at the analyzed stations.

3 Results

3.1 Data exploration

The dataset comprises daily records of maximum
salinity collected from 44 monitoring stations
across the coastal areas of the VMD, with values
ranging from 0.025 to 48.2 g/L (mean = 9.20 g/L;
median = 6.3 g/L; SD = 8.89 g/L), as illustrated in
Fig. 3a. The positively skewed distribution reflects
substantial spatial and temporal variability, from
persistently fresh conditions at upstream stations
(<1 g/L) to extreme values exceeding 40 g/L at
coastal sites (Fig. 3b). These high-end observations,
although flagged as statistical outliers in boxplot
diagnostics, are hydrologically meaningful and
were retained to capture the full extent of seawater
intrusion. Together, these statistics underscore the
diverse  hydrological regimes across the
monitoring network and provide a robust basis for
evaluating the predictive performance of machine

learning models under varying conditions.

In addition to spatial variability, temporal
configuration also plays a crucial role. In
particular, the choice of lag window and forecast
horizon directly affects the number of usable
samples, which, in turn, constrains the model
training and evaluation. Table 1 presents the
number of samples available for model training,
validation, and testing across different lag window
configurations. Increasing the lag window reduced
the usable samples, primarily because it excluded
the time steps that lacked a continuous data record.
However, the observations among the designed
lag windows have no notable imbalance in model

training, validation, and testing.

The configuration with a 1-day lag retained the
largest sample size, with training samples ranging
from 15,875 to 51,757, validation samples from
4,533 to 14,794, and testing samples from 2,280 to
7,417. This is the baseline scenario, where most of
the original dataset is preserved. In contrast,
expanding the lag window to 10, 20, and 30 days
resulted in a substantial decline in available
samples, with training data typically ranging from
approximately 14,948 to 15,640 samples. The
validation and testing subsets also showed
minimal variation. When the lag was further
extended to 60 days, the dataset size reduced to its
smallest value, with training sets ranging from
13,475 to 14,144, validation sets ranging from 3,802
to 4,043, and testing sets ranging from 1,884 to
2,036.

Table 1. Number of available samples corresponding to the lag window

Lag window Training sample

Validation sample Testing sample

1 day 15,875-51,757
10 days 15,539-15,640
20 days 15,368-15,474
30 days 14,948-15,190
60 days 13,475-14,144

4,533-14,794 2,280-7,417

4,429-4,468 2,222-2,251
4,372-4,422 2,189-2,225
4,247-4,339 2,121-2,186
3,802—4,043 1,884-2,036

DOI: 10.26459 /hueunijns.v134i1S-1.7876
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3.2 Model performance evaluation

The predictive performance of the RFR and SVR
models was assessed across a range of lag features
and forecast horizons to investigate the influence
of the look-back window length and prediction
step on forecasting accuracy. Seventy modelling
scenarios were evaluated, corresponding to
combinations of five lag windows and seven

forecast steps (i.e., 35 scenarios for each model).

148

During the training phase, both models
consistently achieved high R? and NSE across all
lag-horizon combinations, indicating robust fitting
to the observed data. However, their error
dynamics varied substantially with the forecast
length. The SVR model demonstrated superior
predictive accuracy for shorter forecasts (1-2 days)
when longer lag windows (20-60 days) were
applied. Under these conditions, the lowest
training errors were obtained, with minimum

MAE and RMSE values of 0.787 g/L and 1.385 g/L,
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respectively. In contrast, the RFR exhibited greater
robustness over extended forecast horizons.
Although slightly less accurate for the short-term
predictions, RFR maintains higher R?)/NSE and
smaller error magnitudes as the lead time
increases. For instance, at a 60-day lag and a 7-day
forecast step, RFR achieved an R? of 0.93 and NSE
of 0.928, with RMSE of 1.802 g/L and MAE of 1.145
g/L, outperforming SVR (RMSE = 2.874 g/L and
MAE = 1.736 g/L). Overall, the highest training
performance for both models was observed at a
forecast step of 1 day, where SVR and RFR
achieved R? values of 0.955 (lag window 30 days)
and 0.952 (lag window 60 days), respectively.

In the testing phase, both models also
exhibited strong generalizability. For shorter
forecast steps (1-2 days ahead), R? and NSE values
exceeded 0.85 in multiple scenarios, with the MAE
typically remaining around 1.0 g/L. The best test
performance (R? = NSE = 0.928) was recorded at a
lag of 1 and a step of 1 for both models (Fig. 4). As
the forecast horizon extended, a gradual decline in
R? and NSE was observed. The SVR maintained an
advantage in certain mid-range scenarios—for
example, attaining R? and NSE of 0.813 and 0.806,

DOI: 10.26459 /hueunijns.v134i1S-1.7876

respectively, at a lag of 10 days and a forecast step
of 3 days. However, RFR showed more consistent
performance over longer forecast steps (4-7 days),
particularly at a lag of 30 days, where R? and NSE
remained above 0.62 even at step 7. In contrast, the
performance of SVR deteriorated more noticeably
at extended horizons, especially when longer lag

features (e.g., 60 days) were used.

Notably, R? and NSE witnessed nearly

identical ~patterns across the lag-horizon
combinations, confirming their strong agreement
in evaluating model efficiency. The coefficient of
determination emphasizes the proportion of
variance explained, whereas NSE provides a more
sensitive measure of predictive reliability relative
to the mean observation. In both senses, RFR
consistently outperforms SVR for medium to long
horizons, while SVR slightly surpassed RFR in
very short forecasts. This balance implies that
while SVR

fluctuations, RFR offers greater generalization and

effectively  captures  shorter

stability, making it more suitable for operational

salinity forecasting over multiple-day horizons.
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Fig. 4. Performance heatmaps of RFR and SVR models across different lag windows and forecast horizons
Each cell represents the performance score for a specific combination of a lag window (y-axis) and a forecast horizon
(x-axis). The color intensity corresponds to the metric value, with higher R?/NSE and lower MAE/RMSE indicating
better model performance.
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Random Forest (RFR} Support Vector Regression (SYR)

Salinity (g/L)
5-day ahead 4-day ahead 3-day ahead 2-day ahead 1-day ahead

6-day ahead

7-day ahead

—— Measured ---- Predicted

Fig. 5. Multistep salinity forecasts at Hoa Binh station via RFR and SVR with a 20-day lag window
Each subplot represents one forecast horizon, with the observed salinity (blue line) and predicted salinity (red
dashed line) plotted over time (i.e., illustrated over a representative period from the testing dataset). Salinity is
expressed in g/L. Hoa Binh station represents a transitional site where the 20-day lag gave the best performance.
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4 Discussion

41 Optimal lag features

The results indicate that both models achieved
their highest predictive performance when using
lag windows of 20 days. In contrast, shorter
configurations such as 1-day and 10-day lags
yielded

forecasts (e.g., next-day predictions), but their

strong performance for short-term
accuracy declined substantially as the prediction
horizon increased. This degradation is likely due to
insufficient historical context in shorter lags, which
limits the model’s ability to generalize temporal
patterns in salinity fluctuations — a phenomenon
also noted in hydrological forecasting studies [30,
31].

Interestingly, the 20-day lag window, which
roughly corresponds to one tidal cycle, provided
accurate next-day predictions and sustained
performance across multiple lead times. Although
accuracy gradually declined as the forecast step
increased, the reduction was smooth and stable,
suggesting that this lag range strikes a suitable
balance between information richness and noise
suppression. Similar findings were reported by Ma
et al, who demonstrated that incorporating
historical data in the range of 15 to 30 days
significantly improved flood forecasting accuracy
via a deep learning framework [32]. Chen et al. also
highlighted the effectiveness of incorporating
tidal-scale temporal features in river level
forecasting under typhoon conditions [33]. These
studies reinforce that lag windows aligned with
dominant hydro-tidal cycles can enhance the
model’s ability to capture periodic dynamics and

improve the robustness of multistep prediction.

Surprisingly, extending the lag window
from 30 to 60 days—initially assumed to provide
more comprehensive historical information—did
not improve model performance. The accuracy

gains were marginal and comparable with those
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from the 1-day and 10-day configurations. This
outcome suggests that excessive lag depth may
introduce redundant or noisy information, thereby
diluting relevant signals and potentially
compromising the model’s predictive ability [32].
In addition, as shown in Table 1, a longer lag
substantially reduces the available samples, which
may limit the models’ capacity to learn robust
patterns. Thus, the combined effects of redundant
information and reduced sample size likely explain
the lack of improvement with the longest lag

window.

4.2  Comparative model performance

Results from Section 3.2 also showed that in this
study, SVR exhibited greater performance in short-
(1-3 days), whereas RFR

demonstrated better stability over extended

term forecasts

prediction horizons (4-7 days). This distinction
aligns with findings from prior hydrological
studies. For example, Bargam et al. reported that
SVR achieved lower RMSE and higher NSE scores
than did RFR when applied to daily streamflow
prediction in a data-scarce basin, suggesting SVR's
ability to capture high-resolution, short-term

dynamics with fewer training samples [34].

The superior short-term performance of SVR
may be attributed to its kernel-based learning
mechanism, which is well-suited for capturing
local nonlinearities in time series data without
overfitting. However, as the forecast horizon
increases, SVR’s reliance on recent observations
may limit its capacity to model broader temporal
dependencies and compound errors across steps.
In contrast, RFR, as an ensemble of decision trees,
benefits from its ability to generalize over longer
historical patterns and mitigate overfitting by
These

differences in model behavior have also been

averaging across multiple estimators.

observed in applications such as drought or

streamflow forecasting, where SVR typically excels
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in short-term prediction. In contrast, RFR

maintains  greater extended

timeframes [35, 36].

stability over

The salinity forecasting results at the Hoa
Binh station with a 20-day lag window (Fig. 5)
clearly illustrate the behavioral differences
between the RFR and SVR models across various
forecast horizons. In short-term forecasts (Steps 1-
3), SVR can follow observed trends, particularly
during sharp increases and decreases in data.
However, as the forecast horizon extends (Steps 4—
7), SVR tends to smooth the predictions and
attenuate amplitude variations. In contrast, RFR
maintains the overall trend and demonstrates
greater temporal stability. These findings are
consistent with the quantitative results presented
in Section 4.2, where SVR outperforms RFR in
short-term forecasting because its kernel-based
learning mechanism effectively captures local
nonlinearities. Conversely, RFR, with its ensemble
of decision trees and stronger generaliration
capacity, performed more robustly over longer

prediction windows.

This pattern is not unique to Hoa Binh;
similar observations were made at stations such as
Vam Kenh, Tra Kha, and Ben Trai. Support vector
regression maintained relatively high short-term
accuracy at locations with substantial variability or
RFR exhibited greater

resilience and consistency over extended forecast

data gaps, whereas

steps.

4.3 Limitations and future works

Despite the encouraging performance of both
machine learning models in forecasting salinity
across the VMD, this study is subject to certain
First, the

constructed by aggregating data from all stations,

limitations. training dataset was
which may have led to model confusion regarding

station-specific patterns, potentially reducing

predictive accuracy. This limitation arose from the

DOI: 10.26459 /hueunijns.v134i1S-1.7876

lack of sufficient data at individual stations to train
the ML separately. In future work, we plan to
develop more advanced ML and deep learning
models to examine further the benefits and
drawbacks of using combined versus individual
datasets. Second, the models were trained on
processed data without applying imputation or
decomposition techniques. While this was a
deliberate choice to assess model performance
under minimal assumptions, it undoubtedly
constrained the predictive potential of both

models.

Future studies will focus on improving
model performance by strategically selecting
tailored to each station’s
Additionally,

preprocessing techniques should be applied to

training data
characteristics. appropriate
exploit better the temporal and statistical features
of the salinity data.

hydrometeorological variables, such as rainfall,

Integrating  other
streamflow, and water levels, will also be explored.
Finally, the authors intend to investigate deep
learning models and ensemble techniques to

increase forecasting accuracy and robustness.

5 Conclusions

This study evaluated the salinity forecasting
performance of random forest regression and
support vector regression by using multitemporal
lag features across different forecast horizons in
the Vietnamese Mekong Delta. The results
both models

predictive accuracy, particularly with a 20-day lag

revealed that achieved high
window. Across the four evaluation metrics (R?
NSE, MAE, and RMSE), support vector regression
demonstrated superior short-term forecasting
ability (1-3 days),

regression exhibited more stable and reliable

whereas random forest

performance at longer forecast horizons (4-7 days).

These differences are consistent with the inherent

characteristics of each algorithm: support vector
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regression’s  strength in  capturing local
nonlinearities versus random forest regression’s
robustness in generalizing over extended temporal

contexts.

Extending the lag window to 30-60 days
failed to improve accuracy, suggesting excessive
historical data may introduce noise. The findings
underscore the importance of selecting appropriate
lag structures for effective multistep forecasting.
While both models

aggregated data were used, further improvements

performed well when
can be achieved by incorporating station-specific
training, feature preprocessing, and integrating
additional hydrometeorological variables. Overall,
the proposed machine learning framework offers a
promising data-driven approach for supporting
early warning systems and adaptive water
resource management in the Vietnamese Mekong

Delta.
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