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Abstract. We performed a phylogenetic analysis of six strawberry cultivars using chloroplast rbcL, rpoC2, 

and nuclear ribosomal ITS2 sequences. The objectives of this study were to analyze the phylogenetic 

relationship of 6 strawberry cultivars (Bach Tuyet Trang, Nhat Sky, Ha Lan Hoa Hong, New zealand, 

Han Goseul and Hana) based on rbcL, rpoC2, and ITS2 regions. The results compared to Nucleotide 

BLAST GenBank showed a high level of similarity (97.57-99.15%) for the rbcL sequences, 98.40-98.86% 

for the rpoC2 sequences, and 93.32-99.37% for the ITS2 sequences, all of which were similar to Fragaria x 

ananassa. Our study indicated that rbcL and nuclear ribosomal ITS2 sequences increased the efficiency of 

the phylogenetic analysis, while rpoC2 sequences did not provide sufficient clarity to confidently resolve 

the evolutionary history of strawberry cultivars. Phylogenetic analysis using DNA barcode markers 

(ITS2, rbcL and rpoC2) through Maximum Parsimony resulted in clades with a high bootstrap value: 99 

for HN-HG and bootstrap value of 75 for NZ and HL cultivars. Our findings suggest that DNA 

barcoding is an efficient tool for identifying the genetic diversity of these six strawberry cultivars and 

highlights the potential for this study to contribute to the conservation, sustainable genetic resources and 

breeding program of the Fragaria species. 
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1 Introduction 

Strawberry (Fragaria x ananassa) is a member of 

the Rosaceae (Rose) family, subfamily Rosoideae 

and is grown worldwide due to its versatility and 

high nutrient content. Most strawberries are 

cultivated for commercial purposes in over 60 

countries, and originated from the hybridization of 

two local American species (F. chiloensis X F. 

virginiana) [1]. Different strawberries were easily 

recognizable by their size, fragrance, and red fruit 

and their exceptional vigor [2], on which basis they 

were brought into cultivation and breeding [1]. In 

addition, strawberries are packed with essential 

nutrients such as manganese, calcium, iron, 

magnesium and potassium. They are also a 

significant source of antioxidant compounds, 

boasting high levels of vitamin C, phenolic 

constituents and folate [3]. 

More than 20 species of strawberries were 

classified with various ploidy levels, and these 

wild strawberries (octoploid F x ananassa) were 

cultivated in Turkey for a long time, to generate 

strawberry genetic resources [4]. Global 

strawberry production occupied about 5% per year 

in the first two decades of the 20th century [5]. Asia 

is known as a continent that produces the most 

strawberries. In Vietnam, Da Lat is considered as a 

strawberry capital because of its cool climate 

(temperature around 15-24oC), and a cornerstone 

of its agricultural economy and tourism. Bach 
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Tuyet Trang, Hana, Nhat Sky, Han Goseul, Ha Lan 

Hoa Hong, and New Zealand are strawberry 

cultivars commonly grown in Da Lat due to their 

superior fruit quality (large size, attractive color, 

and appealing flavor), stable yield, and 

adaptability to the year-round cool climate. They 

have high commercial value, are easy to market, 

and meet the demands of premium markets and 

tourism, thereby contributing to increasing 

farmers’ incomes and enhancing the value of the 

local agricultural sector. 

The strawberry Nhat Sky and Hana 

(Tochiotome) cultivars originated in Japan and 

were developed in the late 20th century as 

improved commercial varieties from Tochigi 

Prefecture [6, 8]. Hana cultivar was bred from a 

cross between Kurume No. 49 and Tochinomine, 

and is renowned for its large fruit size, sweetness, 

and high yield [7]. Bach Tuyet Trang is a South 

American cultivar that was once nearly extinct 

worldwide. In 2010, it was revived as a commercial 

variety by growers in the Netherlands and 

Belgium, and was later introduced to Japan for 

cultivation and improvement [9]. The New 

Zealand cultivar grown in Da Lat is considered a 

premium strawberry variety in the region, 

originating from America and subsequently bred 

and cultivated widely since the late 18th century 

[10]. The Netherlands is renowned for its breeding 

and development of strawberry cultivars, 

particularly since the 20th century. One notable 

cultivar is Ha Lan Hoa Hong, which may have 

been developed in the country. This variety is 

recognized for its high heat tolerance and deep 

pink flowers that resemble those of roses (family 

Rosaceae). [11]. Additionally, Han Goseul cultivar 

was developed in 2016 by the Highland 

Agriculture Research Institute [12] in South Korea 

through a cross between Albion, known for large 

fruits, and Seolhyang, a continuously flowering 

variety [13]. As a day-neutral cultivar, Han Goseul 

can produce fruit year-round under both long- and 

short-day conditions, with continuous flowering 

and large fruit production [12, 13].  

An assessment of genetic divergences 

among species based on morphological 

characteristics can be inaccurate due to the 

influence of environmental factors. In recent years, 

molecular studies have gained popularity for 

providing insights into genetic differences through 

sequencing. DNA markers are useful tools for 

detecting variations in living organisms and play a 

vital role in distinguishing closely related species. 

Genetic diversity analysis of various strawberry 

varieties has been widely researched by comparing 

morphological characteristics and anatomy. 

Numerous studies have investigated genetic 

diversity using molecular techniques, including 

random amplified polymorphic DNA (RAPD), 

amplified fragment length polymorphisms 

(AFLP), ISSR-EST and simple sequence repeats 

(SSRs) [14-18]. The DNA barcode as an approach to 

identifying genetic variation and conservation [19]. 

This molecular technique is not influenced by 

developmental stages or environmental factors, as 

DNA can be easily extracted from all tissues, 

providing a basis for species identification at the 

genetic level [20].  

The Internal Transcribed Spacer (ITS) region 

of the 18S-5.8S-26S nuclear ribosomal DNA 

(nrDNA) has used well as a phylogenetic marker 

in most groups of flowering plants [21], consists of 

internal transcribed spacer 1 (ITS1) region and 

internal transcribed spacer 2 (ITS2) region. The 

advantages of these regions are biparental 

inheritance, simplicity, sensitivity, universality, 

easy PCR amplification, and suitable amplification 

for phylogenetic analysis at the species or genetic 

level [22-24]. The ITS2 region is an effective DNA 

barcode because it is short, easily amplified, and 

genetically informative. The ITS2 is known as a 

valuable sequence tag for determining medicinal 

plants [25-27]. Consequently, it contains a great of 
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genetic information and is located in the nuclear 

region, this leads to use to overcome the issue of 

failure to amplify the ITS in some species and 

suitable for identifying low or high level taxa [28-

30]. 

However, the presence of pseudogenes as 

well as the existence of orthologs and paralogs 

were considered as problems in evolution [31-33]. 

The chloroplast genome has been provided as a 

useful tool in identifying species and studying 

evolution of species [34, 35]. The chloroplast (cp) is 

important in various plant cell functions, including 

photosynthesis, and carbon fixation. Although the 

plant cp genome is highly conserved in sequence 

and gene content [36], the loss or mutation of genes 

can lead to different sequences. The cp genomes 

are inherited from the maternal parent and no 

recombination. They are widely used intraspecific 

and interspecific studies for evaluating genetic 

diversity, identifying species [37-39] or studying 

phylogenetic, taxonomy and evolutionary [40]. 

The slowly evolving rbcL gene was conserved to 

resolve phylogenetic relationships at the lower 

taxonomic level in Saxifragaceae and Asteraceae 

species [41,42]. Studies have identified the RNA 

polymerase C2 (rpoC2) gene as a highly variable 

region, and many studies were successfully tested 

the phylogenetic relationships in the Poaceae 

family [43-46]. To my knowledge, research 

phylogenetic analysis of 34 chloroplast genomes 

elucidates the relationships between wild and 

domestic species within the genus. Although 

previous studies on Fragaria phylogenetic 

relationships based on DNA sequences, the 

analysis of the combination between nuclear DNA 

(ITS2) and chloroplast DNA (rbcL + rpoC2) are 

limited. In this study, rbcL and rpoC2 chloroplast 

and nuclear DNA (ITS2) genomes representative of 

the genus Fragaria have been sequenced and their 

sequences compared in order to select a specific 

resources for practical applications. 

2 Materials and Methods 

2.1 Plant materials 

The leaves of 6 strawberry cultivars including Bach 

Tuyet Trang (BT), Nhat Sky (NS), Ha Lan Hoa 

Hong (HL), Newzealand (NZ), Han Goseul (HG) 

and Hana (HN) were collected in November 2024 

from the greenhouse of the Dalat Nuclear Research 

Institute. In the field, samples were put in plastic 

bags and kept in cool temperature, transferred to 

Biotechnology Institution, Tra Vinh University and 

stored -20oC. 

2.2 DNA extraction 

Total genomic DNA from 0.1g of young leaf 

samples were extracted using DNA Dneasy Plant 

Pro kit (QIAGEN) according to the manufacturer’s 

protocol. DNA samples were tested by nanodrop 

to assess the quality (Thermo Scientific™ 

NanoDrop™ One Microvolume UV-Vis 

spectrophotometer) and diluted to 100ng/µl 

concentration and then stored at -20oC for further 

analysis.  

2.3 DNA barcoding amplification and 

sequencing 

A polymerase chain reaction (PCR) was performed 

with barcoding primers (Table 1), with 30 µl of the 

reaction mixture containing 15 µl Phanta flash 

master mix 1X (Vazyme), 0,6 µl DNA (100ng/µl), 

1,2 µl each primer (10uM) and 12 µl of deionized 

water. PCR amplification was performed in a DNA 

thermal cycler, which was programmed for initial 

DNA denaturation at 95oC for 5 mins, followed 40 

cycles of 15 seconds denaturation at 95oC, 

annealing at 55oC – 60oC for 60 seconds, and 

extension at 72oC for 1 min, with a final extension 

at 72oC for 10 mins.
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Table 1. The universal primers for DNA barcoding used in this study 

Locus Primer name Sequences (5‘-3‘) References 

1 ITS2-F ATGCGATACTTGGTGTGAAT 
[47] 

2 ITS2-R GACGCTTCTCCAGACTACAAT 

3 rbcL-F ATGTCACCACAAACAGAAAC 
[48] 

4 rbcL-R TCGCATGTACCTGCAGTAGC 

5 rpoC2-F GGAATTCGAAATTCTCCCGTTT 
[49] 

6 rpoC2-R AGGGATAATCTAGAGCTTCGAGTTG 

To check the presence or absence of bands, 

amplified PCR products were electrophoresed 

using 2% agarose gel (1xTAE buffer and 1 µl 6x 

gelred loading buffer (ABT)). The gel was run at 

100V for 40 mins, and then was visualized by the 

MultiDoc UVP (UVP GelStudio PLUS, 

AnalytikJena) system.  

The PCR products were sent to Salagene 

company (https://salagene.com ). To obtain the 

sequence of each region (rbcL, rpoC2, and ITS2), the 

forward and reverse sequences were aligned using 

Geneious [50]. In the searching for the similarities 

between those sequences and the sequences 

deposited in the GenBank database, the sequences 

of this study were analyzed using BLAST (Basic 

Local Aligment Search Tool) program 

at  https://blast.ncbi.nlm.nih.gov/Blast  

2.4 Phylogenetic analysis 

The alignment was then exported to Molecular 

Evolutionary Genetics Analysis (Mega 12) 

software for phylogenetic tree analysis. The 

Maximum Parsimony trees were constructed for 

rbcL, rpoC2, and ITS2 data using the Kimura 2- 

parameter model with 1000 bootstrap replications 

for node supports and bootstrap support was 

categorized as strong (>85%), moderate (70–85%), 

weak (50–70%), or poor (<50%) [51]. 

3 Results and Discussion 

3.1 Analysis of qualitative test 

The electrophoresis images showed DNA bands in 

all samples, indicating successful isolation of DNA 

genomes from leaves of six strawberry plants. The 

PCR reactions were successfully amplified the 

rbcL, rpoC2 and ITS2 regions in all six cultivars, as 

shown by target bands, the length of the amplified 

product was from 600bp to 850bp (Fig. 1). The 

results of amplified target regions indicated the 

effective recognition of genomic DNA in all 

samples by the primers.

 

Fig. 1.   The gel electrophoresis results confirm successful PCR amplification (clear bands at 600–850 bp for rbcL, 

rpoC2, and ITS2 across all six cultivars) Nucleotide of sequencing

https://salagene.com/
https://blast.ncbi.nlm.nih.gov/Blast
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The sequencing results were examined by 

using Geneious software to detect uncertainties 

and verify the sequences. Ambiguous nucleotides 

were excluded, and valid stop codons were 

authenticated. The high quality of the sequences 

was demonstrated by the clean alignment and 

well-resolved phylogenetic trees. In present study, 

DNA barcoding was used to distinguish between 

strawberry cultivars. The sequences were stored in 

Geneious for future alignment. 

The length of ITS2 sequences ranged from 

855bp to 879bp, following rbcL ranged from 456bp 

to 705bp, and rpoC2 sequences was from 369bp to 

660bp, respectively. Nucleotide BLAST was 

applied to check the similarities ranging from 

97.57-99.15% with Fragaria x ananassa for rbcL; 

98.40-98.86% with F. x ananassa for ITS2 and 93.32-

99.37% with F. x ananassa for rpoC2 (Table 2). 

Sequence similarities between 98-100% generally 

support classification within the same species, 

indicating that the specimens tested likely belong 

to F. x ananassa cultivars.

Table 2. Nucleotide sequences were deposited in the NCBI GenBank 

Cultivars Primers NCBI Accession Number Cover (%) 
Similarity 

index (%) 

Sequencing 

size (bp) 

BT 

ITS2 

PQ836331 F. x ananassa 97 98.86 870 

HG PQ836331 F. x ananassa 99 98.64 879 

HL PQ836329 F. x ananassa 98 98.61 869 

HN PQ836331 F. x ananassa 98 98.40 870 

NS PQ836331 F. x ananassa 95 98.63 855 

NZ PQ836331 F. x ananassa 99 98.64 862 

BT 

rbcL 

JX118093 F. x ananassa 95 98.18 686 

HG JX118093 F. x ananassa 96 97.99 456 

HL JX118093 F. x ananassa 99 99.15 705 

HN JX118093 F. x ananassa 96 98.67 691 

NS JX118093 F. x ananassa 99 97.86 697 

NZ JX118093 F. x ananassa 99 97.57 692 

BT 

rpoC2 

ON478181 F. x ananassa 96 96.89 486 

HG ON478181 F. x ananassa 98 93.32 399 

HL ON478181 F. x ananassa 100 94.93 604 

HN ON478181 F. x ananassa 95 94.57 369 

NS ON478181 F. x ananassa 96 99,37 660 

NZ ON478181 F. x ananassa 99 98,41 626 
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3.2 Molecular characters of the Fragaria 

species 

The sequence characteristics and parsimony-based 

tree statistics of the tree ITS2 and cpDNA regions 

were shown in Table 3. The aligned sequences 

originated from all cpDNA regions and the ITS2 

revealed differences in the sequence length 

between the Fragaria cultivars. The maximum-

parsimony (MP) analysis showed the number of 

variable and parsimony informative sites. The 

length of rpoC2 region is the smallest one among 

the molecular markers, compared to rbcL and ITS2 

regions. The percentage of informative characters 

in rbcL region is 1.89%; following ITS2 region 

(1.58%); rpoC2 region (1.55%); cpDNA+ITS2 

(2.85%) and rbcL+ rpoC2 region (4.7%). A total 908-

912 characters were generated when combining 

cpDNA (rbcL+ rpoC2) and ITS2 sequences, and 26 

characters were parsimony- informative. The 

heuristic search produced 161 steps with 784 of 

constant and 871 of parsimony – uninformative. 

Maximum parsimony analysis resulted in CI of 

0.931; RI of 0.592; and RC of 0.551.

Table 3. Sequence characteristics and tree statistic of the cpDNA and ITS2 regions from the maximum-parsimony 

(MP) analysis 

Characteristics 
cpDNA nrDNA 

ITS2 

Combined 

cpDNA 

Combined 

cpDNA and ITS2 rbcL rpoC2 

LAS (bp) 710 664 508 720 912 

TL 64 89 45 174 161 

PICs* 11(1.89%) 8(1.55%) 8(1.58%) 27(4.70%) 26(2.85%) 

CI 0.922 0.955 0.978 0.983 0.931 

RI 0.545 0.500 0.875 0.903 0.592 

RC 0.502 0.477 0.856 0.888 0.551 

Constant  652 548 470 529 784 

Parsimony-

uninformative 
692 616 495 660 871 

LAS: length of aligned sequences; TL: tree length; PICs: parsimony-informative characters; CI: consistency index; RI: 

retention index; RC: rescaling consistency index.

3.3 Phylogenetic tree analysis 

Many researches indicated that DNA barcoding 

technology is used to classify the known or 

unknown species of berry fruit products. It 

provides much accurate information regarding 

species which should be recognized. In this study, 

six strawberry cultivars were identified through 

molecular markers (ITS2 and cpDNA regions) 

which further helped in classification, 

identification and evaluation of Fragaria x ananassa 

species. A phylogenetic tree was created by using 

the Maximum Parsimony (MP) with 1,000 

bootstrap replicates. This approach offers insights 

into evolutionary connections, where the length of 

branchs indicates the level of genetic variation. 

For ITS2 marker, although the phylogenetic 

tree analysis had lower steps (TL = 45 steps), 

consistency index (CI=0.978), retention index 

(RI=0.875), rescaling consistency index (RC=0.856) 

has the highest values. The phylogenetic tree was 

divided into three clades: clade I was divided into 

2 sub-clades. Sub-clade I.1 included HG and HL 
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cultivars with strong bootstrap (86%) and NZ 

specie was placed together in clade I. NS and BT 

species were placed in clade II with a moderate 

bootstrap (82%), while HN specie was placed out 

of clade I and clade II as it showed diversity (Fig. 

2). Previous studies showed the ribosomal DNA 

ITS2 region was used as a tag to identify species, 

has gained a lot of attention recently [52]. Kress at 

al [55] indicated that ITS2 region is a powerful tool 

in identifying Rosaceae family and successfully 

identified 78 and 100% of them at the species and 

genus levels, respectively. [25] Proposed the use of 

the ITS2 locus as a universal barcode for all major 

plant taxa in traditional herbal medicine. Indeed, 

ITS2 has already been suggested as a suitable 

marker applicable for taxonomic classification and 

phylogenetic reconstruction in eukaryotes by 

many researchers because of its advantages such as 

short nuclear region, strong universality, low 

intraspecific variance [53, 54, 49]. 

The phylogenetic tree constructed using the 

rbcL marker through the maximum parsimony 

method, with bootstrap support, revealed 64 steps 

and had the following indices: CI = 0.922; RI = 

0.545; RC = 0.502 (Table 3). The phylogenetic tree 

from rbcL sequences showed that BT, NH and NS 

species in cluster I formed clearly distinctive clades 

with a weak bootstrap 58%. Within this group, BT 

and NH are shown to be the most closely related, 

forming a subclade. NS is positioned as a sister 

taxon to the BT-NH clade.  Clade II comprised NZ 

and HG species, which are depicted as being very 

closely related (strong bootstrap 95%). The taxon 

HL is clearly distinct from the others, representing 

a more distant relative within these species (Fig. 2). 

Previous studies indicated that the sequence data 

from rbcL gene is used for studying phylogenetic 

relationships among other plant genes because it 

has some advantages such as the slow rate of 

evolutionary changes and shows the least amount 

of divergence among plastid genes in flowering 

plants [56, 57]. Reddy and Li eat al [58, 59] showed 

this region is highly suitable for resolving 

relationships between genera and species, and no 

difficulties of alignment.

 

Fig. 2. Phylogenetic tree reconstruction of six samples from ITS2, rpoC2 and rbcL regions using Maximum Parsimony 

technique with 1,000 bootstrap replicates

For rpoC2 marker, the phylogenetic tree 

constructed through the maximum parsimony 

method by using the bootstrap mode had 89 steps, 

CI = 0.955; RI = 0.500; RC = 0.477 (Table 3). The 

phylogenetic tree analysis is divided into two 

primary clades. The first clade included NS, BT, 

HG and HN taxa. In this clade, the relationships 

between HG and HN were solved with weak 

bootstrap value (53%). It indicated that data are not 

reliable group these two species together. The HL 

and NZ clade is a stronger relationship than the 

HG-HN pairing, with a weak to moderate 

bootstrap values (65). The analysis of 

the rpoC2 gene suggests a specific set of 

evolutionary relationships. It is shown that HL and 

NZ grouped together and separately to HG and 

HN together. However, the statistical support for 

these groupings is low, particularly for the HG and 

HN pair (53) (Fig. 2). Our results are different with 

previous researches on rpoC2 [60, 61]. Lin et al. [60] 

indicated that horizontal gene transfer of cp genes 

from Haloxylon ammodendron species to 
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Holoparasite Cistanche deserticola species through 

the phylogenetic evidence that was built base on 

rpoC2 sequences. Their phylogenetic tree showed a 

very high bootstrap value, especially is under 

species level (almost 100%). Study of Gomolińska 

et al. [61] also indicated the same high bootstrap 

value of phylogenetic tree base on rpoC2 gene 

sequences. This suggests that the rpoC2 gene alone 

may not provide sufficient information to 

confidently resolve the evolutionary history of 

strawberry cultivars. This failure may be due to 

incomplete lineage sorting or the absence of a 

“barcode grap”, and related to large effective 

population size as well as a slow species 

evolutionary rate [62]. Moreover, inadequate 

sampling within a genus rich in species and the 

absence of agreement on suggested markers also 

lead to errors in identifying closely related species 

[63]. 

3.4 Phylogenetic tree based on ITS2 and 

cpDNA data  

The use of the rbcL combination with rpoC2 

increased the efficiency of the barcode analysis. 

The phylogenetic tree constructed through the 

maximum parsimony contained 174 steps of tree 

length, a consistency index of 0.983; retention index 

of 0.903; rescaling consistency index of 0.888 (Table 

3). In the phylogenetic tree, HG, HN, BT and HL 

species were part of clade I, while NS and NZ 

species were placed in clade II and clade II, 

respectively (Fig. 3)

 

Fig. 3. Phylogenetic tree reconstruction of six samples from ITS2, rpoC2 and rbcL genes using Maximum Parsimony 

technique with 1,000 bootstrap replicates

The maximum parsimony tree was built 

based on the combination between ITS2 region and 

cpDNA (rbcL+ rpoC2) divided into four clades (Fig. 

3). A closely related group including NZ and HL 

formed a distinct group with moderate bootstrap 

values (73%), and a very high genetic relationship 

was found in HN and HG with strong bootstrap 

(99%). The BT clade appeared to be on a separate 

evolutionary line from the NZ-HL and HN-HG-NS 

groups, while the NS clade is distinct from all the 

other groups. This result indicated that the 

phylogenetic relationships among six different 

plant have diversified into at least four distinct 

genetic groups, with two of those groups 

containing pairs of more closely related 

populations. The use of both nuclear (ITS2) and 

chloroplast DNA (rbcL and rpoC2) has made 

genetic relationship between selected strawberry 

cultivars become more apparent. The similar 

results were reported that ITS is more successful in 

genetic diversity analyses of more asunder 

populations, in contrasts to ISSR-PCR and RAPD-

PCR methods, ITS method provided more clear 

data in regional genetic discrimination of 

populations [64]. 
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4 Conclusion 

The results of this study showed that DNA 

barcoding is an effective technique for 

identifyingand resolving phylogenetic 

relationships among six strawberry cultivars. The 

genetic diversity of selected cultivars showed 

similarities with the data available in GenBank. 

Specifically, the rbcL and ITS2 regions were found 

to be highly suitable for assessing genetic diversity 

at both the genus and species level. The 

combination of rbcL and rpoC2 along with all used 

DNA barcode markers used (ITS2, rbcL and rpoC2) 

increased the efficiency of the phylogenetic 

analysis. Our results also indicated that there are 

two pairs of strawberry cultivars (HN-HG and NZ-

HL) that are closely related genetically consistently 

clustering in the same clade across almost all 

phylogenetic analyses. However, combining more 

DNA barcoding markers and increasing the 

number of collected samples could further clarify 

the phylogenetic relationships within the Fragaria 

species. This information will be valuable for the 

development and utilization of ornamental 

strawberries, as well as for the selection and 

breeding of new cultivars.  
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