Reaction mechanism of 1-(4-methoxyphenyl)-2-selenourea and HOO• from quantum chemical calculation perspectives
PDF (Vietnamese)

How to Cite

1.
Hương Đinh Q, Dương T, Nam PC. Reaction mechanism of 1-(4-methoxyphenyl)-2-selenourea and HOO• from quantum chemical calculation perspectives. hueuni-jns [Internet]. 2020Jun.30 [cited 2024Nov.14];129(1C):5-14. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/5695

Abstract

The density functional theory (DFT) has been used to study the antioxidant capacity of 1-(4-methoxyphenyl)-2-selenourea (CH3OPSeU) in reaction with HOO. Three reaction mechanisms (hydrogen atom transfer (HAT), single electron transfer (SET), and radical adduct formation (RAF)), and reaction rate constants were investigated and calculated. The results show that the HAT mechanism is generally more predominant than the SET and HAT ones. The quantity of products under this mechanism accounts for 99,9% of the total products. N12–H13 is the most favored hydrogen transfer position with the highest rate constant at 4,1×106 M–1·s–1.

https://doi.org/10.26459/hueuni-jns.v129i1C.5695
PDF (Vietnamese)

References

  1. Battin EE, Brumaghim JL. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009;55(1):1-23. DOI: https://doi.org/10.1007/s12013-009-9054-7
  2. Polovka M, Brezova V, Stasko A. Antioxidant properties of tea investigated by EPR spectroscopy. Biophys Chem. 2003;106(1):39-56. DOI: https://doi.org/10.1016/S0301-4622(03)00159-5
  3. Wright JS, Johnson ER, DiLabio GA. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. Journal of the American Chemical Society. 2001;123(6):1173-83. DOI: https://doi.org/10.1021/ja002455u
  4. Klein E, Lukeš V, Cibulková Z, Polovková J. Study of N–H, O–H, and S–H bond dissociation enthalpies and ionization potentials of substituted anilines, phenols, and thiophenols. J Mol Struct. 2006; 758(2):149-59. DOI: https://doi.org/10.1016/j.theochem.2005.10.015
  5. Mayer JM, Hrovat DA, Thomas JL, Borden WT. Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/ Methanol, and Phenoxyl/Phenol Self-Exchange Reactions. Journal of the American Chemical Society. 2002;124(37):11142-7. DOI: https://doi.org/10.1021/ja012732c
  6. Urbaniak A, Szeląg M, Molski M. Theoretical investigation of stereochemistry and solvent influence on antioxidant activity of ferulic acid. Computational and Theoretical Chemistry. 2013;1012:33-40. DOI: https://doi.org/10.1016/j.comptc.2013.02.018
  7. Musialik M, Litwinienko G. Scavenging of dpph• Radicals by Vitamin E Is Accelerated by Its Partial Ionization: The Role of Sequential Proton Loss Electron Transfer. Org Lett. 2005;7(22):4951-4. DOI: https://doi.org/10.1021/ol051962j
  8. Huong DQ, Duong T, Nam PC. An experimental and computational study of antioxidant activity of N-phenylthiourea and N-phenylselenourea analogues. Vietnam J Chem. 2019;57(4):469-79. DOI: https://doi.org/10.1002/vjch.201900091
  9. Ingold KU, Pratt DA. Advances in radical-trapping antioxidant chemistry in the 21st century: a kinetics and mechanisms perspective. Chem Rev. 2014;114(18):9022-46. DOI: https://doi.org/10.1021/cr500226n
  10. Galano A, Alvarez-Idaboy JR. A computational methodology for accurate predictions of rate constants in solution: application to the assessment of primary antioxidant activity. J Comput Chem. 2013;34(28):2430-45. DOI: https://doi.org/10.1002/jcc.23409
  11. Thong NM, Quang DT, Bui TNH, Dao DQ, Nam PC. Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study. Chem Phys Lett. 2015;625:30-5. DOI: https://doi.org/10.1016/j.cplett.2015.02.033
  12. Tabrizi L, Dao DQ, Vu TA. Experimental and theoretical evaluation on the antioxidant activity of a copper(ii) complex based on lidocaine and ibuprofen amide-phenanthroline agents. RSC Advances. 2019;9(6):3320-35. DOI: https://doi.org/10.1039/C8RA09763A
  13. Shang Y, Zhou H, Li X, Zhou J, Chen K. Theoretical studies on the antioxidant activity of viniferifuran. New J Chem. 2019;43(39):15736-42. DOI: https://doi.org/10.1039/C9NJ02735A
  14. Thong NM, Vo VQ, Huyen TL, Bay MV, Tuan D, Nam PC. Theoretical Study for Exploring the Diglycoside Substituent Effect on the Antioxidative Capability of Isorhamnetin Extracted from Anoectochilus roxburghii. ACS omega. 2019; 4(12):14996-5003. DOI: https://doi.org/10.1021/acsomega.9b01780
  15. Klein E, Lukeš V, Ilčin M. DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chemical Physics. 2007;336(1):51-7. DOI: https://doi.org/10.1016/j.chemphys.2007.05.007
  16. Rimarčík J, Lukeš V, Klein E, Ilčin M. Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J Mol Struct. 2010;952(1):25-30. DOI: https://doi.org/10.1016/j.theochem.2010.04.002
  17. Dzib E, Cabellos JL, Ortíz-Chi F, Pan S, Galano A, Merino G. Eyringpy: A program for computing rate constants in the gas phase and in solution. Int J Quantum Chem. 2018;119(2):1-10. DOI: https://doi.org/10.1002/qua.25686
  18. Marcus RA. Chemical and Electrochemical Electron-Transfer Theory. Annu Rev Phys Chem. 1964;15(1):155-96. DOI: https://doi.org/10.1146/annurev.pc.15.100164.001103
  19. Marcus RA. Electron transfer reactions in chemistry. Theory and experiment. Reviews of Modern Physics. 1993;65(3):599-610. DOI: https://doi.org/10.1016/S0022-0728(97)00091-0
  20. Nelsen SF, Weaver MN, Luo Y, Pladziewicz JR, Ausman LK, Jentzsch TL, et al. Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data. The journal of physical chemistry A. 2006;110(41):11665-76. DOI: https://doi.org/10.1021/jp064406v
  21. Wigner E. On the Quantum Correction For Thermodynamic Equilibrium. Phys Rev. 1932;40:749-59. DOI: https://doi.org/10.1103/PhysRev.40.749
  22. Eckart C. The Penetration of a Potential Barrier by Electrons. Phys Rev. 1930;35(11):1303-9. DOI: https://doi.org/10.1103/PhysRev.35.1303
  23. Biegler–König F. Aim2000. J Comput Chem. 2001;22(5):545-59. DOI: https://doi.org/10.1002/jcc.10085
  24. Vo VQ, Nam PC, Bay MV, Thong NM, Nguyen DC, Mechler A. Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans. Sci Rep. 2018;8(1):1-10. DOI: https://doi.org/10.1038/s41598-018-30860-5
  25. Ngo TC, Dao DQ, Thong NM, Nam PC. A DFT analysis on the radical scavenging activity of oxygenated terpenoids present in the extract of the buds of Cleistocalyx operculatus. The Royal Society of Chemistry. 2017;7(63):39686-98. DOI: https://doi.org/10.1039/c7ra04798c
  26. Vo VQ, Ho TP, Thao PTT, Nam PC. Substituent effects on antioxidant activity of monosubstituted indole-3-carbinols: A DFT study. Vietnam J Chem. 2019;57(6):728-34. DOI: https://doi.org/10.1002/vjch.2019000110
  27. Holroyd LF, Van Mourik T. Insufficient description of dispersion in B3LYP and large basis set superposition errors in MP2 calculations can hide peptide conformers. Chem Phys Lett. 2007;442(1-3):42-6. DOI: https://doi.org/10.1016/j.cplett.2007.05.072
  28. Zhao Y, Schultz NE, Truhlar DG. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J Chem Theory Comput. 2006;2(2):364-82. DOI: https://doi.org/10.1021/ct0502763
  29. Alberto ME, Russo N, Grand A, Galano A. A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Phys Chem Chem Phys. 2013;15(13):4642-50. DOI: https://doi.org/10.1039/c3cp43319f
  30. Vélez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, et al. A computational study of stereospecifity in the thermal elimination reaction of menthyl benzoate in the gas phase. J Phys Org. 2009;22(10):971-7. DOI: https://doi.org/10.1039/c3cp43319f
  31. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, et al. Gaussian 09, rev. A. 02. 2009.
  32. Serobatse KRN, Kabanda MM. An appraisal of the hydrogen atom transfer mechanism for the reaction between thiourea derivatives and •OH radical: A case-study of dimethylthiourea and diethylthiourea. Computational and Theoretical Chemistry. 2017;1101:83-95. DOI: https://doi.org/10.1016/j.comptc.2016.12.027
  33. Vo VQ, Gon TV, Bay MV, Mechler A. Antioxidant Activities of Monosubstituted Indolinonic Hydroxylamines: A Thermodynamic and Kinetic Study. J Phys Chem B. 2019;123(50):10672-9. DOI: https://doi.org/10.1021/acs.jpcb.9b08912
  34. Filarowski A, Majerz I. AIM analysis of intramolecular hydrogen bonding in O-hydroxy aryl Schiff bases. The journal of physical chemistry A. 2008;112(14):3119-26. DOI: https://doi.org/10.1021/jp076253x
  35. Rozas I, Alkorta I, Elguero J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. Journal of the American Chemical Society. 2000;122(45):11154-61. DOI: https://doi.org/10.1021/ja0017864
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array