Abstract
Four secondary metabolites, namely, friedelin (1), arborinol (2), isoarborinol (3), and stigmasterol (4), were isolated from the aerial parts of Glycosmis parviflora (Sims) Little. Their chemical structures were established on the basis of NMR spectral evidence and in comparison with reported data. This is the first report on the isolation of compounds (1-4) from G. parviflora.
References
- Yasir M, Tripathi MK, Singh P, Shrivastava R. The Genus Glycosmis [Rutaceae]: A Comprehensive Review on its Phytochemical and Pharmacological Perspectives. The Natural Products Journal. 2019;9(2):98-124. DOI: https://doi.org/10.2174/2210315508666180622121212
- Hộ PH. Cây cỏ Việt Nam, Quyển 2. Hồ Chí Minh (VN): Nxb Trẻ. 2003; 952 tr.
- Dianxiang Z, Hartley TG. Flora of China. 2008;11:80-83.
- Chang CWJ, Greger H, Hofer O. Progress in the Chemistry of Organic Natural Products. Springer-Verlag Wien. 2000;187-219.
- Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Antimycobacterial friedelane-terpenoid from the root bark of Terminalia avicennioides. American Journal of Chemistry. 2012;1(2):52-55. DOI: https://doi.org/10.5923/j.chemistry.20110102.11
- Farruque R, Chowdhury R, Sohrab MH, Hasan CM, Rashid MA. Triterpene constituents from leaves of Melicope indica. Pharmazie. 2003;58(7):518-520. DOI: https://doi.org/10.1002/chin.200343156
- Gomes RA, Teles YCF, Pereira FO, Rodrigues LAS, Lima EO, Agra MF, Souza MFV. Phytoconstituents from Sidastrum micranthum (A.St. - Hil.) Fryxell (Malvaceae) and antimicrobial activity of pheophytin a. Brazilian Journal of Pharmaceutical Sciences. 2015;51(4):861-867. DOI: http://dx.doi.org/10.1590/S1984-82502015000400012
- Forgo P, Kövér KE. Gradient enhanced selective experiments in the 1H NMR chemical shift assignment of the skeleton and side-chain resonances of stigmasterol, a phytosterol derivative. Steroids. 2004;69:43-50. DOI: https://doi.org/10.1016/j.steroids.2003.09.012
- Pakrashi SC, Samanta TB. Acid induced empimerization and rearrangements of arborinol, the novel triterpene from Glycosmis arborea (ROXB.) DC.. Tetrahedron Letters. 1967;8(38):3679-3684. DOI: https://doi.org/10.1016/S0040-4039(01)89772-0
- Fan QF, Song QS, Zuo GY, Zheng JY, Na Z, Hu HB. Chemical constituents of the twigs and leaves of Glycosmis montana. Chemistry of Natural Compounds. 2015;51(3):550-551. DOI: https://doi.org/10.1007/s10600-015-1339-z
- Soma MA, Khan MF, Tahia F, Al-Mansur MA, Rahman MS, Rashid MA. Cyclooxygenase-2 inhibitory compounds from the leaves of Glycosmis pentaphylla (Retz.) A. DC.: Chemical and in silico studies. Asian Journal of Chemistry. 2019;31(6):1260-1264. DOI: https://doi.org/10.14233/ajchem.2019.21913
- Odeh IC, Tor-Anyiin TA, Igoli JO, Anyam JV. In vitro antimicrobial properties of friedelan-3-one from Pterocarpus santalinoides L’Herit. ex DC.. African Journal of Biotechnology. 2016;15(14):531-538. DOI: https://doi.org/10.5897/AJB2015.15091
- Anjum A, Sultan MZ, Hasan CM, Rashid MA. Antibacterial and cytotoxic constituents from Bridelia verrucosa Haines growing in Bangladesh. Dhaka University Journal of Pharmaceutical Sciences. 2017;16(1):61-68. DOI: https://doi.org/10.3329/dujps.v16i1.33383
- Zavala-Ocampo LM, Aguirre-Hernández E, Pérez-Hernández N, Rivera G, Marchat LA, Ramírez-Moreno E. Antiamoebic activity of Petiveria alliacea leaves and their main component, Isoarborinol. Journal of Microbiology and Biotechnology. 2017;27(8):1401-1408. DOI: https://doi.org/10.4014/jmb.1705.05003
- Kaur N, Chaudhary J, Jain A, Kishore L. Stigmasterol: A Comprehensive Review. International Journal of Pharmaceutical Sciences and Research. 2011;2(9):2259-2265. DOI: http://dx.doi.org/10.13040/IJPSR.0975-8232.2(9).2259-65.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2020 Array