Fabrication and electrical characterization of lead-free BiFe0.91(Mn0.47Ti0.53)0.09O3–BaTiO3 ceramics
PDF

How to Cite

1.
Truong Tho N. Fabrication and electrical characterization of lead-free BiFe0.91(Mn0.47Ti0.53)0.09O3–BaTiO3 ceramics. hueuni-jns [Internet]. 2020Jun.22 [cited 2024Nov.14];129(1B):63-70. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/5746

Abstract

The (1-x)BiFe0.91(Mn0.47Ti0.53)0.09O3xBaTiO3 (BFMT–BT) lead-free ceramics have been fabricated by the conventional solid-state reaction method. The phase structure of BFMT-BT investigated by X–ray diffraction shows a single perovskite phase. Although 20% mol of Bi2O3 was added to the raw materials, the evaporation of Bi3+ ions during calcining and sintering processes is from 20 to 30% wt. relative to other elements. The effect of BaTiO3content on electrical properties of BFMT-BT ceramic has been investigated. At BaTiO3concentration of 0.3 mol and the sintering temperature of 950oC, electrical properties of ceramics are best with the density (r) of 7.6 g/cm3, the electromechanical coupling factor (kp) of 0.28, the dielectric constant (εr) of 1028, and the difference in polarizations at zero field is about 10.5 mC/cm2.
https://doi.org/10.26459/hueuni-jns.v129i1B.5746
PDF

References

  1. Xu Y. Ferroelectric Materials and Their Applications. Amsterdam–London–Newyork–Tokyo: North-Holland. 1991.
  2. Vuong LD, Gio PD, Tho NT, Chuong TV. Relaxor Ferroelectric Properties of PZT-PZN-PMnN Ceramics. Indian J Eng Mater Sci. 2013;20:555-560.
  3. Luan NDT, Vuong LD, Chuong TV, Tho NT. Structure and Physical Properties of PZT-PMnN-PSN Ceramics Near the Morphological Phase Boundary. Adv Mater Sci Eng. 2014;2014:1-8.
  4. Ederer C, Spaldin NA. Influence of Strain and Oxygen Vacancies on the Magnetoelectric Properties of Multiferroic Bismuth Ferrite. Phys Rev B. 2005;71:224103-9.
  5. Tho NT, Inoue A, Noda M, Okuyama M, Low-Temperature Preparation of Bismuth-Related Ferroelectrics Powder and Thin Films by Hydrothermal Synthesis. IEEE Trans Ultrasonic Ferroelec Freq Control [Internet]. 2007;54: 2603-2607.
  6. Inoue A, Nguyen TT, Noda M, Okuyama M. Low-Temperature Preparation of Bismuth-Related Ferroelectrics by Hydrothermal Synthesis. Proc 2007 16th IEEE Inter Symp Applica Ferroe. 2007;136-137.
  7. Truong-Tho N, Nghi-Nhan NT. Fabrication by Annealing at Approximately 1030 °C and Electrical Characterization of Lead-Free (1-x)Bi0.5K0.5TiO3–xBa(Fe0.5Nb0.5)0.05Ti0.95O3 Piezoelectric Ceramics. J Electronic Mater. 2017;46:3585-3591.
  8. Vuong LD, Tho NT. The Sintering behavior and Physical properties of Li2CO3-Doped Bi0.5(Na0.8K0.2) 0.5TiO3 Lead-Free Ceramics. Inter J Mater Res. 2017;108(3): 222227.
  9. Vuong LD, Truong-Tho N. Effect of ZnO Nanoparticles on the Sintering Behavior and Physical Properties of Bi0.5(Na0.8K0.2)0.5TiO3 Lead-Free Ceramics. J Electronic Mater. 2017;46: 6395-6402.
  10. Truong-Tho N, Vuong LD. Effect of Sintering Temperature on the Dielectric, Ferroelectric and Energy storage properties of SnO2-doped Bi0.5(Na0.8K0.2)0.5TiO3 Lead-free Ceramics. J Adv Dielectric. 2020.
  11. Tho NT, Kanashima T, Sohgawa M, Ricinschi D, Noda M, Okuyama M. Ferroelectric Properties of Bi1.1Fe1-xCoxO3 Thin Films Prepared by Chemical Solution Deposition Using Iterative Rapid Thermal Annealing in N2 and O2. Jpn J Appl Phys. 2010;49: 09MB05-7.
  12. Leontsev SO, Eitel RE. Dielectric and Piezoelectric Properties in Mn‐Modified (1−x)BiFeO3–xBaTiO3 Ceramics. J Ame Ceram Soc. 2009;92: 2957-2961.
  13. Luo W, Wang D, Liu T, Cai J, Zhang L, Liu Y. Room Temperature Simultaneously Enhanced Magnetization and Electric Polarization in BiFeO3 Ceramics Synthesized by Magnetic Annealing. Appl Phys Lett. 2009;94: 202507-3.
  14. Tho NT, Kanashima T, Okuyama M. Leakage Current Reduction and Ferroelectric Property of BiFe1-xCoxO3 Thin Films Prepared by Chemical Solution Deposition Using Iterative Rapid Thermal Annealing at Approximately 520 °C. Jpn J Appl Phys. 2010;49:095803-6.
  15. Nguyen TT, Kanashima T, Okuyama M. Leakage Current Reduction and Ferroelectric Property of BiFe1-xCoxO3 Thin Films Prepared by Chemical Solution Deposition Using Rapid Thermal Annealing. MRS online Proc. 2011;1199:1199-F06-19.
  16. Kumar M, Yadav KL. Rapid Liquid Phase Sintered Mn Doped BiFeO3 Ceramics with Enhance Polarization and Weak Magnetization. Appl. Phys. Lett. 2007;91:242901-3.
  17. Kim SJ, Han SH, Kim HG, Kim AY, Kim JS, Cheon CI. Multiferroic Properties of Ti-Doped BiFeO3 Ceramics. J Kor Phys Soc. 2010;56:439-442.
  18. Bernardo MS, Calatayud DG, Jardiel T, Makovec D, Peiteadoa M, Caballero AC. Titanium Doping of BiFeO3 Ceramics and Identification of Minor Phases by Raman Spectroscopy. Raman Spectros [Internet]. 2017;48:884-890.
  19. Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti GA, Rodel Jr and J. BaTiO3-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives. Appl Phys Rev. 2017;4:041305-53.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array