Pairing effects on neutron elastic scattering at low energies
PDF

Keywords

elastic scattering
microscopic optical potential
pairing correlations
Skyrme interaction

How to Cite

1.
Tung NH, Thuy TD, Tam DQ, Quynh Tran TN, Nhan Hao TV. Pairing effects on neutron elastic scattering at low energies. hueuni-jns [Internet]. 2020Jun.22 [cited 2024Nov.23];129(1B):57-61. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/5747

Abstract

For the first time, a realistic microscopic calculation for low-energy neutron-nucleus elastic scattering off open-shell nuclei is carried out within the framework of particle-vibration coupling (PVC). In this study, the pairing correlations of the ground state are taken into account. The dependence of the angular distributions on the pairing gaps is discussed.

https://doi.org/10.26459/hueuni-jns.v129i1B.5747
PDF

References

  1. Mizuyama K, Ogata K. Self-consistent microscopic description of neutron scattering by16O based on the continuum particle-vibration coupling method. Physical Review C. 2012;86(4).
  2. Mizuyama K, Ogata K. Low-lying excited states of O24 investigated by a self-consistent microscopic description of proton inelastic scattering. Physical Review C. 2014;89(3).
  3. Blanchon G, Dupuis M, Arellano HF, Vinh Mau N. Microscopic positive-energy potential based on the Gogny interaction. Physical Review C. 2015;91(1).
  4. Blanchon G, Dupuis M, Arellano HF. Prospective study on microscopic potential with Gogny interaction. The European Physical Journal A. 2015;51(12).
  5. Blanchon G, Dupuis M, Bernard RN, Arellano HF. Asymmetry dependence of Gogny-based optical potential. The European Physical Journal A. 2017;53(5).
  6. Hao TVN, Loc BM, Phuc NH. Low-energy nucleon-nucleus scattering within the energy density functional approach. Physical Review C. 2015;92(1).
  7. Nhan Hao TV, Nhu Le N, Koh M, Quang Hung N, Ngoc Duy N, Pham VNT, Hoang Tung N. Microscopic optical potential obtained from energy-density-functional approach for neutron–nucleus elastic scattering. International Journal of Modern Physics E. 2018 06;27(06):1850052.
  8. Chabanat E, Bonche P, Haensel P, Meyer J, Schaeffer R. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nuclear Physics A. 1998;635(1-2):231-256.
  9. Koh M, Bonneau L, Quentin P, Hao TVN, Wagiran H. Fission barriers of two odd-neutron actinide nuclei taking into account the time-reversal symmetry breaking at the mean-field level. Physical Review C. 2017;95(1).
  10. Schunck N, Dobaczewski J, McDonnell J, Moré J, Nazarewicz W, Sarich J, Stoitsov MV. One-quasiparticle states in the nuclear energy density functional theory. Physical Review C. 2010;81(2).
  11. Pillet N, Quentin P, Libert J. Pairing correlations in an explicitly particle-number conserving approach. Nuclear Physics A. 2002 01;697(1-2):141-163.
  12. Hao TVN, Quentin P, Bonneau L. Parity restoration in the highly truncated diagonalization approach: Application to the outer fission barrier of240Pu. Physical Review C. 2012;86(6).
  13. Nhan Hao TV, le Bloas J, Koh M, Bonneau L, Quentin P. Further microscopic studies of the fission barriers of heavy nuclei. International Journal of Modern Physics E. 2012;21(05):1250051.
  14. Dobaczewski J, Nazarewicz W, Werner TR, Berger JF, Chinn CR, Dechargé J. Mean-field description of ground-state properties of drip-line nuclei: Pairing and continuum effects. Physical Review C. 1996;53(6):2809-2840.
  15. Fracasso S, Colò G. Fully self-consistent charge-exchange quasiparticle random-phase approximation and its application to isobaric analog resonances. Physical Review C. 2005;72(6).
  16. Terasaki J, Engel J. Self-consistent Skyrme quasiparticle random-phase approximation for use in axially symmetric nuclei of arbitrary mass. Physical Review C. 2010;82(3).
  17. Mizuyama K, Le NN, Thuy TD, Hao TVN. Jost function formalism based on the Hartree-Fock-Bogoliubov formalism. Physical Review C. 2019;99(5).
  18. Mizuyama K, Le NN, Hao TVN. Fano effect on neutron elastic scattering by open-shell nuclei. Physical Review C. 2020;101(3).
  19. Matsuo M, Mizuyama K, Serizawa Y. Di-neutron correlation and soft dipole excitation in medium mass neutron-rich nuclei near drip line. Physical Review C. 2005;71(6).
  20. Colò G, Niu Y, Vigezzi E, Bortignon PF. A microscopic approach based on particle-vibration coupling: application to charge-exchange transitions and multiplets in odd nuclei. Andreev A, Arsenyev N, Ershov S, Sargsyan V, Vdovin A. EPJ Web of Conferences. 2016;107:06001.
  21. National Nuclear Data Center. Datasets for 116Sn [Data file]. Brookhaven National Laboratory Online Data Service: New York; 2010 [Cited 2020] http://www.nndc.bnl.gov/ ensdf/.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array