Abstract
Let (R, m) be a nonetherian local ring with dim(R) = d ≥ 1 and depth(R) ≥ d − 1. Let I be an m-primary ideal of R. In this paper, we study the non-positivity of the Hilbert coefficients ei(I) under some conditions.
References
- Mandal M, Singh B, Verma JK. On some conjectures about the Chern numbers of filtration. Journal of Algebra. 2011;325(1):147-162.
- McCune L. Hilbert coefficients of parameter ideals, J Commutative Algebra. 2013;5(3):399-412.
- Saikia A, Saloni K. Bounding Hilbert coefficients of parameter ideals. Journal of Algebra. 2018;501 (1):328-344.
- Linh CH, Trung VD. Hilbert coefficients and the depth of associated graded rings. Vietnam Journal of Mathematics. 2019;47(2):431-442.
- Puthenpurakal TJ. Ratliff-Rush filtration, regularity and depth of higher associated graded modules Part II. Journal of Pure and Applied Algebra. 2017; 221 (3):611-631.
- Rossi ME, Valla G. Hilbert Functions of Filtered Modules. Vol 9. Berlin (DE): Springer-Verlag Berlin Heidelberg; 2010. 100 p.
- Trung NV. Reduction exponent and degree bound for the defining equations of graded rings. Proceedings of the American Mathematical Society. 1987;101(2):229-236.
- Elias J. Depth of higher associated graded rings. Journal London Mathematical Society. 2004;70(1): 41-58.
- Hoa LT. Reduction numbers and Rees algebra of powers of an ideal. Proceedings of the American Mathematical Society. 1993;119(2):415-422.
- Linh CH . Bounds for Hilbert coefficients. Viasm: Preprint_1913 [Preprint]. 2019.
- Blancafort C. On Hilbert functions and cohomology. Journal of Algebra. 1997;192(1):439-459.
- Hoa LT. Reduction numbers of equimultiple ideals. Journal of Pure and Applied Algebra. 1996;109 (2):111-126.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2020 Array