Weak Lefschetz property of graded Gorenstein algebras associated to the Apéry set of a numerical semigroup
PDF

Keywords

Apéry set
Artinian Gorenstein algebras
numerical semigroups
weak Lefschetz property

How to Cite

1.
Tran QH, Ho VNP. Weak Lefschetz property of graded Gorenstein algebras associated to the Apéry set of a numerical semigroup. hueuni-jns [Internet]. 2021Dec.31 [cited 2024Nov.14];130(1D):75-82. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/5893

Abstract

It has been conjectured that all graded Artinian Gorenstein algebras of codimension three have the weak Lefschetz property over a field of characteristic zero. In this paper, we study the weak Lefschetz property of associated graded algebras A of the Apéry set of M-pure symmetric numerical semigroups generated by four natural numbers. These algebras are graded Artinian Gorenstein algebras of codimension three.

https://doi.org/10.26459/hueunijns.v130i1D.5893
PDF

References

  1. Brenner H, Kaid A. Syzygy bundles on P2 and the weak Lefschetz property. Illinois Journal of Mathematics. 2007;51(4):1299-1308.
  2. Harbourne B, Schenck H, Seceleanu A. Inverse systems, Gelfand-Tsetlin patterns and the weak Lefschetz property. Journal of the London Mathematical Society. 2011;84(3):712-730.
  3. Mezzetti E, Miró-Roig RM, Ottaviani G. Laplace equations and the weak Lefschetz property. Canadian Journal of Mathematics. 2013;65(3):634-654.
  4. Migliore JC, Miró-Roig RM, Nagel U. Monomial ideals, almost complete intersec tions and the weak Lefschetz property. Transactions of The American Mathematical Society. 2011;363(1):229-257.
  5. Migliore JC, Miró-Roig RM, Nagel U. On the weak Lefschetz property for powers of linear forms. Algebra Number Theory. 2012;6(3):487-526.
  6. Migliore JC, Nagel U. Survey article: a tour of the weak and strong Lefschetz prop erties. Journal of Commutative Algebra. 2013;5(3):329-358.
  7. Miró-Roig RM, Tran QH. On the weak Lefschetz property for almost complete inter sections generated by uniform powers of general linear forms. Journal of Algebra. 2020;551:209-231.
  8. Miró-Roig RM, Tran QH. The weak Lefschetz property for Artinian Gorenstein algebras of codimension three. Journal of Pure and Applied Algebra. 2020;224(7):106305.
  9. Stanley RP. The number of faces of a simplicial convex polytope. Advances in Mathematics. 1980;35(3):236-238.
  10. Harima T, Migliore JC, Nagel U, Watanabe J. The weak and strong Lefschetz properties for Artinian K-algebras. Journal of Algebra. 2003;262(1):99-126.
  11. Cook D II. The Lefschetz properties of monomial complete intersections in positive characteristic. Journal of Algebra. 2012;369:42-58.
  12. Cook D II, Nagel U. The weak Lefschetz property, monomial ideals, and lozenges. Illinois Journal of Mathematics. 2011;55(1):377-395.
  13. Harima T. Characterization of Hilbert functions of Gorenstein Artin algebras with the weak Stanley property. Proceedings of The American Mathematical Society. 1995;123(12):3631-3638.
  14. Migliore JC, Zanello F. The strength of the weak Lefschetz property. Illinois Journal of Mathematics. 2008;52(4):1417-1433.
  15. Boij M, Migliore JC, Miró-Roig RM, Nagel U, Zanello F. On the weak Lefschetz property for Artinian Gorenstein algebras of codimension three. Journal of Algebra. 2014;403:48-68.
  16. Bryant L. Goto numbers of a numerical semigroup ring and the Gorensteiness of associated graded rings. Communications in Algebra. 2010;38(6):2092-2128.
  17. Guerrieri L. Lefschetz properties of Gorenstein graded algebras associated to the Apéry set of a numerical semigroup. Arkiv för Matematik. 2019;57(1):85-106.
  18. Maeno T, Watanabe J. Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials. Illinois Journal of Mathematics. 2009;53(2):591-603.
  19. Miró-Roig RM, Tran QH. The weak Lefschetz property of Gorenstein algebras of codimension three associated to the Apéry sets. Linear Algebra and its Applications. 2020;604:346-369.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array