Impact of Maxwellian averaged neutron capture cross-sections for 182W(n,γ)183W reaction on W isotopic compositions
PDF

Keywords

neutron capture reaction
s-process
isotopic composition

How to Cite

1.
Nguyen NL. Impact of Maxwellian averaged neutron capture cross-sections for 182W(n,γ)183W reaction on W isotopic compositions. hueuni-jns [Internet]. 2021Dec.31 [cited 2024Nov.23];130(1D):39-45. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/6359

Abstract

The W isotopic compositions have been investigated within the classical approach to the s-process nucleosynthesis. The Maxwellian averaged neutron capture cross-sections (MACS) adopted in the calculation are obtained from the TALYS-1.9 code with four nuclear level density models: the constant temperature plus Fermi gas, the back-shifted Fermi gas, the generalised superfluid, and the microscopic method of Goriely. The results show that the uncertainty from MACS values is already propagated in the W isotopic ratios, and the generalised superfluid prediction exhibits the largest deviation from the observed 182W/184W ratio. In addition, since branching points have not been considered in this work, the MACS values of the 182W(n,γ)183W reaction are found not to affect the estimated 183W/184W ratio.

https://doi.org/10.26459/hueunijns.v130i1D.6359
PDF

References

  1. Burbidge E, Burbidge G, Fowler W, Hoyle F. Synthesis of the Elements in Stars. Reviews of Modern Physics. 1957;29:547-655. DOI: https://doi.org/10.1103/RevModPhys.29.547
  2. Cameron AGW. Stellar evolution, nuclear astrophysics, and nucleogenesis. Second edition. Canada; 1957.
  3. Cristallo S, Straniero O, Gallino R, Piersanti L, Dominguez I, Lederer MT. Evolution, nucleosynthesis, and yields of low-mass asymptotic giant branch stars at different metallicities. The Astrophysical Journal. 2009;696:797-820. DOI: https://doi.org/10.1088/0004-637X/696/1/797
  4. Wehmeyer B, Pignatari M, Thielemann FK. Galactic evolution of rapid neutron capture process abundances: the inhomogeneous approach. Monthly Notices of the Royal Astronomical Society. 2015;452:1970-1981. DOI: https://doi.org/10.1093/mnras/stv1352
  5. Kappeler F, Gallino R, Bisterzo S, Aoki W. The s-process: Nuclear physics, stellar models, and observations. Reviews of Modern Physics. 2011;83:157-193. DOI: https://doi.org/10.1103/RevModPhys.83.157
  6. Bisterzo S, Gallino R, Kappeler F, Wiescher M, Imbriani G, Straniero O, et al. The Branchings of the Main s-process: Their Sensitivity to α-induced Reactions on 13C and 22Ne and to the Uncertainties of the Nuclear Network. Monthly Notices of the Royal Astronomical Society. 2015;449:506-527. DOI: https://doi.org/10.1093/mnras/stv271
  7. Ávila JN, Lugaro M, Ireland TR, Gyngard F, Zinner E, Cristallo S, et al. Tungsten isotopic compositions in stardust SiC grains from the Murchison meteorite: Constraints on the s-process in the Hf-Ta-W-re-Os region. The Astrophysical Journal. 2012;744:49-92. DOI: https://doi.org/10.1088/0004-637X/744/1/49.
  8. Cristallo S, Straniero O, Piersanti L, Gobrecht D. Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the pH-FRUITY interface. The Astrophysical Journal Supplement Series. 2015;219:40-61. DOI: https://doi.org/10.1088/0067-0049/219/2/40
  9. Kappeler K, Gallino R, Busso M, Picchio G, Raiteri CM. S-Process nucleosynthesis: Classical approach and asymptotic giant branch models for low-mass stars. The Astrophysical Journal. 1990;354:630-643. DOI: https://doi.org/10.1086/168720.
  10. Vinyoles N, Serenelli A. A sensitivity study of s-process: the impact of uncertainties from nuclear reaction rates. Journal of Physics: Conference Series. 2016;665:012028-4. DOI: https://doi.org/10.1088/1742-6596/665/1/012028.
  11. Cescutti G, Hirschi R, Nishimura N, Hartogh JWd, Rauscher T, Murphy ASJ, et al. Uncertainties in s-process nucleosynthesis in low-mass stars determined from Monte Carlo variations. Monthly Notices of the Royal Astronomical Society. 2018;478(3):4101-4127. DOI: https://doi.org/10.1093/mnras/sty1185
  12. Bao Z, Beer H, Kappeler F, Voss F, Wisshak K, Rauscher T. Neutron cross sections for nucleosynthesis studies. Atomic Data and Nuclear Data Tables. 2000;76:70-154. DOI: https://doi.org/10.1006/adnd.2000.0838
  13. Data extracted using the KADoNiS On-Line Data Service. URL: https://www.kadonis.org
  14. Koning AJ, Rochman D. Modern Nuclear Data Evaluation with the TALYS Code System. Nuclear Data Sheets 2012;113:2841-2934. DOI: https://10.1016/j.nds.2012.11.002
  15. Hauser W, Feshbach H. The Inelastic Scattering of Neutrons. Physical Review. 1952;87:366-373. DOI: https://doi.org/10.1103/PhysRev.87.366
  16. Utsunomiya H, Renstrom T, Tveten GM, Goriely S, Ari-izumi T, Filipescu D, et al. γ-ray strength function for thallium isotopes relevant to the 205Pb-205Tl chronometry. Physical Review C. 2019;99:024609-8. DOI: https://doi.org/10.1103/PhysRevC.99.024609
  17. Netterdon L, Endres A, Goriely S, Mayer J, Scholz P, Spieker M, et al. Experimental constraints on the γ-ray strength function in 90Zr using partial cross sections of the 89Y(p,γ)90Zr reaction. Physical Letter B. 2015;744:358-362. DOI: https://doi.org/10.1016/j.physletb.2015.04.018
  18. Nishimura N, Hirschi R, Rauscher T, Murphy AStJ, Cescutti G. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations. Monthly Notices of the Royal Astronomical Society. 2017;469:1752-1767. DOI: https://doi.org/10.1093/mnras/stx696
  19. Gilbert A, Cameron AGW. A composite nuclear-level density formula with shell corrections. The Canadian Journal of Physics. 1965;43:1446-1496. DOI: https://doi.org/10.1139/p65-139
  20. Vonach H, Uhl M, Strohmaier B, Smith BW, Bilpuch EG, Mitchell GE. Comparison of average s-wave resonance spacings from proton and neutron resonances. Physical Review C. 1988;38:2541-2549. DOI: https://doi.org/10.1103/physrevc.38.2541
  21. Ignatyuk AV, Weil JL, Raman S, Kahane S. Density of discrete levels in 116Sn. Physical Review C. 1993;47:1504-1513. DOI: https://doi.org/10.1103/PhysRevC.47.1504
  22. Goriely S, Tondeur F, Pearson JM. A Hartree-Fock nuclear mass table. Atomic Data and Nuclear Data Tables. 2001;77:311-381. DOI: https://doi.org/10.1006/adnd.2000.0857
  23. Goriely S, Hilaire S, Koning AJ. Improved microscopic nuclear level densities within the HFB plus combinatorial method. Physical Review C. 2008;78:064307-14. DOI: https://doi.org/10.1103/PhysRevC.78.064307
  24. Phuc LT, Hung NQ, Dang ND, Huong LTQ, Anh NN, Duy NN, et al. Role of exact treatment of thermal pairing in radiative strength functions of 161-163Dy nuclei. Physical Review C. 2020;102:061302(R)-6. DOI: https://doi.org/10.1103/PhysRevC.102.061302
  25. Macklin RL, Drake DM, Arthur ED. Neutron Capture Cross Sections of 182W, 183W, 184W, and 186W from 2.6 to 2000 keV. Nuclear Science and Engineering. 1983;84:98-119. DOI: https://doi.org/10.13182/NSE83-A17717
  26. Lodders K, Palme H, Gail HP. Abundances of the elements in the solar system. In Landolt-Bronstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Trmper (ed.), Berlin, Heidelberg, New York: Springer-Verlag. 2009;560-630. DOI: https://doi.org/10.1007/978-3-540-88055-4_34
  27. Pritychenko B, Mughabghab SF, Sonzogni AA. Calculations of Maxwellian-averaged cross sections and astrophysical reaction rates using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries. Atomic Data and Nuclear Data Tables. 2010;96:645-748. DOI: https://doi.org/10.1016/j.adt.2010.05.002
  28. Nakagawa T, Chiba S, Hayakawa T, Kajino T. Maxwellian-averaged neutron-induced reaction cross sections and astrophysical reaction rates for kT = 1 keV to 1 MeV calculated from microscopic neutron cross section library JENDL-3.3. Atomic Data and Nuclear Data Tables. 2005;91:77-186. DOI: https://doi.org/10.1016/j.adt.2005.08.002
  29. Clayton DD, Ward RA. S-Process Studies: Exact Evaluation of an Exponential Distribution of Exposures. The Astrophysical Journal. 1974;193:397-399. DOI: https://doi.org/10.1086/153175
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array