Effect of Dzyaloshinskii–Moriya interaction on Heisenberg antiferromagnetic spin chain in a longitudinal magnetic field
PDF

Keywords

antiferromagnetic spin chain
Dzyaloshinskii–Moriya interaction
transverse spin fluctuations
functional integral method

How to Cite

1.
Pham HT, Ngo TT, Le TT, Hoang DL, Phan THN, Nguyen HC. Effect of Dzyaloshinskii–Moriya interaction on Heisenberg antiferromagnetic spin chain in a longitudinal magnetic field. hueuni-jns [Internet]. 2021Dec.31 [cited 2024Nov.27];130(1D):31-8. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/6423

Abstract

Using functional integral method for the Heisenberg antiferromagnetic spin chain with the added Dzyaloshinskii-Moriya Interaction in the presence of the longitudinal magnetic field, we find out expression for free energy of the spin chain via spin fluctuations, from which quantities characterize the antiferromagnetic order and phase transition such as staggered and total magnetizations derived. From that, we deduce the significant effect of the Dzyaloshinskii-Moriya interaction on the reduction of the antiferromagnetic order and show that the total magnetization can be deviated from the initial one under the influence of canting of the spins due to a combination of the Dzyaloshinskii-Moriya interaction and the magnetic field. Besides, the remarkable role of the transverse spin fluctuations due to the above factors on the antiferromagnetic behaviours of the spin chain is also indicated.  

https://doi.org/10.26459/hueunijns.v130i1D.6423
PDF

References

  1. Pham TH. Thermodynamic Properties and Excitation Spectrum of Spin Chain with Antiferromagnetic – Ferromagnetic Interactions. Journal of Physics: Conference Series. 2019;1274:012006(8). DOI: https://doi.org/10.1088/1742-6596/1274/1/012006
  2. Miyashita S. Phase Transition in Spin Systems with Various Types of Fluctuations. Proceedings of the Japan Academy, Series B. 2010;86(7):643–666. DOI: https://doi.org/10.2183/pjab.86.643
  3. Ivanshin VA, Yushankhai V, Sichelschmidt J, Zakharov DV, Kaul EE, and Geibel C. ESR Study of the Anisotropic Exchange in the Quasi-One-Dimensional Antiferromagnet Sr2V3O9. Physical Review B. 2003;68(6):064404(6). DOI: https://doi.org/10.1103/PhysRevB.68.064404
  4. Bertaina S, Pashchenko VA, Stepanov A, Masuda T, and Uchinokura K. Electron Spin Resonance in the Spin-1/2 Quasi-One-Dimensional Antiferromagnet with Dzyaloshinskii-Moriya Interaction BaCu2Ge2O7. Physical Review Letters. 2004;92:057203(4). DOI: https://doi.org/10.1103/PhysRevLett.92.057203
  5. Ponomaryov AN, Ozerov M, Zviagina L, Wosnitza J, Povarov KY, Xiao F, Zheludev A, Landee C, Čižmár E, Zvyagin AA, and Zvyagin SA. Electron Spin Resonance in a Strong-Rung Spin-1/2 Heisenberg Ladder, Physical Review B. 2016;93(13):134416(4). DOI: https://doi.org/10.1103/PhysRevB.93.134416
  6. Glazkov VN, Fayzullin M, Krasnikova Y, Skoblin G, Schmidiger D, Mühlbauer S, and Zheludev A. ESR Study of the Spin Ladder with Uniform Dzyaloshinskii-Moriya Interaction. Physical Review B. 2015;92(18):184403(12). DOI: https://doi.org/10.1103/PhysRevB.92.184403
  7. Hälg M, Lorenz WEA, Povarov KY, Månsson M, Skourski Y, and Zheludev A. Quantum Spin Chains with Frustration due to Dzyaloshinskii-Moriya Interactions. Physical Review B. 2014;90(17):174413(10). DOI: https://doi.org/10.1103/PhysRevB.90.174413
  8. Dzyaloshinskii IE. Thermodynamic Theory of "Weak" Ferromagnetism in Antiferromagnetic Substances. Soviet Physics — Journal of Experimental and Theoretical Physics. 1957;5(6):1259-1272.
  9. Moriya T. New Mechanism of Anisotropic Superexchange Interaction. Physical Review Letters. 1960;4(5):288-230. DOI: https://doi.org/10.1103/PhysRevLett.4.228
  10. Dmitrienko VE, Ovchinnikova EN, Collins SP, Nisbet G, Beutier G, Kvashnin YO, et al. Measuring the Dzyaloshinskii–Moriya Interaction in a Weak Ferromagnet. Nature Physics. 2014;10:202-206. DOI: https://doi.org/10.1038/nphys2859
  11. Nembach HT, Shaw JM, Weiler M, Jué E and Silva TJ. Linear Relation between Heisenberg Exchange and Interfacial Dzyaloshinskii–Moriya Interaction in Metal Films. Nature Physics. 2015;11:825–829. DOI: https://doi.org/10.1038/nphys3418
  12. Tschirhart H, Ong ETS, Sengupta P, and Schmidt TL. Phase Diagram of Spin-1 Chains with Dzyaloshinskii-Moriya Interaction. Physical Review B. 2019;100(19):195111(7). DOI: https://doi.org/10.1103/PhysRevB.100.195111
  13. Mahdavifar S, Soltani MR, Masoudi AA. Quantum Corrections of the Dzyaloshinskii-Moriya Interaction on the Spin-1/2 AF-Heisenberg Chain in an Uniform Magnetic Field. The European Physical Journal B. 2008;62:215-220. DOI: https://doi.org/10.1140/epjb/e2008-00141-x
  14. Vahedi J, Ashouri A, and Mahdavifar S. Quantum Chaos in the Heisenberg Spin Chain: The Effect of Dzyaloshinskii-Moriya Interaction. Chaos. 2016;26:103106(7). DOI: https://doi.org/10.1063/1.4964745
  15. Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, et al. Real-Space Observation of a Two-Dimensional Skyrmion Crystal, Nature. 2010;465:901–904. DOI: https://doi.org/10.1038/nature09124
  16. Kim S, Ueda K, Go G, Jang PH, Lee KJ, Belabbes A, et al. Correlation of the Dzyaloshinskii–Moriya Interaction with Heisenberg Exchange and Orbital Asphericity. Nature Communications. 2018;9:1648(9). DOI: https://doi.org/10.1038/s41467-018-04017-x
  17. Parente WEF, Pacobahyba JTM, Neto MA, Araújo IG, Plascak JA. Spin-1/2 Anisotropic Heisenberg Antiferromagnet Model with Dzyaloshinskii-Moriya Interaction via Mean-Field Approximation. Journal of Magnetism and Magnetic Materials. 2018;462:8–12. DOI: https://doi.org/10.1016/j.jmmm.2018.04.054
  18. Pham TH. Magnetic Properties and Spin Wave Spectra of a Ferromagnetic Monolayer with 2D Tetragonal Structure: An Application for Co2S2 Monolayer. Journal of Magnetism and Magnetic Materials. 2020;509:166813(8). DOI: https://doi.org/10.1016/j.jmmm.2020.166813
  19. Nath R, Tsirlin AA, Kaul EE, Baenitz M, Büttgen N, Geibel C, et al. Strong Frustration due to Competing Ferromagnetic and Antiferromagnetic Interactions: Magnetic Properties of M(VO)2(PO4)2 (M=Ca and Sr). Physical Review B. 2008; 78(2):024418(13). DOI: https://doi.org/10.1103/PhysRevB.78.024418
  20. Mermin ND and Wagner H. Absence of Ferromagnetism or Antiferromagnetism in One or Two-Dimensional Isotropic Heisenberg Models. Physical Review Letters. 1966;17(22):1133–1136. DOI: https://doi.org/10.1103/PhysRevLett.17.1133
  21. Strečka J, Gálisová L and Derzhko O. Ground-State Properties of the Spin-1/2 Heisenberg–Ising Bond Alternating Chain with Dzyaloshinskii–Moriya Interaction. Acta Physica Polonica A. 2010;118(5):742-744. DOI: https://doi.org/10.12693/APhysPolA.118.742
  22. Varkarchuk IA, Rudavskii YK. Method of Functional Integration in the Theory of Spin Systems. Theoretical and Mathematical Physics. 1981;49:1002-1011. DOI: https://doi.org/10.1007/BF01028995
  23. Kashid V, Schena T, Zimmermann B, Mokrousov Y, Blügel S, Shah V, et al. Dzyaloshinskii-Moriya Interaction and Chiral Magnetism in 3d−5d Zigzag Chains: Tight-Binding Model and Ab Initio Calculations. Physical Review B. 2014;90(5):054412(18). DOI: https://doi.org/10.1103/PhysRevB.90.054412
  24. Yang JH, Li ZL, Lu XZ, Whangbo MH, Wei SH, Gong XG, et al. Strong Dzyaloshinskii-Moriya Interaction and Origin of Ferroelectricity in Cu2OSeO3. Physical Review Letters. 2012;109(10):107203(5). DOI: https://doi.org/10.1103/PhysRevLett.109.107203
  25. Von Ranke PJ, de Oliveira NA, Alho BP, Plaza EJR, de Sousa VSR, CaronL, et al. Understanding the inverse magnetocaloric effect in antiferro- and ferrimagnetic arrangements. Journal of Physics Condensed Matter. 2009;21:056004(8). DOI: https://doi.org/10.1088/0953-8984/21/5/056004
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array