Abstract
In this paper, we investigated hyperbolic metamaterials based on a structure containing metallic nanowires embedded in a dielectric matrix with the utility environment theory method. Hyperbolic metamaterials with near-zero permittivity may exist simultaneously in type I and type II. The propagation of transverse electromagnetic waves in these two types of metamaterial was considered. The diverging incident light beam seems to convert into a well-collimated beam and transfers all its energy in the direction perpendicular to the surface of the hyperbolic metamaterial of type I in the region of special values of the incidence angle from –5 to 5°. In the hyperbolic metamaterial of type II, the light wave entirely transmits through the material layers, while the transmittance remains constant in the range of incident angle values from –40 to 40°. The radius of the metal nanowires and the material thickness also affect the characteristics of electromagnetic wave propagation.
References
- Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chemical Society Reviews. 2011;40(5):2494-507.
- Viktor GV. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet Physics Uspekhi. 1968;10(4):509.
- Shalaev VM. Optical negative-index metamaterials. Nature Photonics. 2007;1(1):41-8.
- Cai W, Shalaev VM. Optical Metamaterials—Fundamentals and Applications. New York: Springer; 2010.
- Capolino F. Metamaterials Handbook 1: Theory and Phenomena of Metamaterials. Boca Raton: CRC Press; 2009.
- Simovski CR, Belov PA, Atrashchenko AV, Kivshar YS. Wire Metamaterials: Physics and Applications. 2012;24(31):4229-48.
- Zouhdi S, Sihvola A, Vinogradov AP. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. Dordrecht: Springer; 2009.
- Alù A, Silveirinha MG, Engheta N. Transmission-line analysis of 1-near-zero (ENZ) filled narrow channels. Physical Review E. 2008;78(1):016604.
- Silveirinha M, Engheta N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Physical Review B. 2007;75(7):075119.
- Koivurova M, Hakala T, Turunen J, Friberg AT, Ornigotti M, Caglayan H. Metamaterials designed for enhanced ENZ properties. New Journal of Physics. 2020;22(9):093054.
- Kaipurath RM, Pietrzyk M, Caspani L, Roger T, Clerici M, Rizza C, et al. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials. Scientific Reports. 2016;6(1):27700.
- Shen N-H, Zhang P, Koschny T, Soukoulis CM. Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation. Physical Review B. 2016;93(24):245118.
- Habib M, Briukhanova D, Das N, Yildiz BC, Caglayan H. Controlling the plasmon resonance via epsilon-near-zero multilayer metamaterials. Nanophotonics. 2020;9(11):3637-44.
- Islam SS, Faruque MRI, Islam MT. An Object-Independent ENZ Metamaterial-Based Wideband Electromagnetic Cloak. Scientific Reports. 2016;6(1):33624.
- Lio GE, Ferraro A, Ritacco T, Aceti DM, De Luca A, Giocondo M, et al. Leveraging on ENZ Metamaterials to Achieve 2D and 3D Hyper-Resolution in Two-Photon Direct Laser Writing. 2021;33(18):2008644.
- Hajian H, Ozbay E, Caglayan H. Beaming and enhanced transmission through a subwavelength aperture via epsilon-near-zero media. Scientific Reports. 2017;7(1):4741.
- Hajian H, Ozbay E, Caglayan H. Enhanced transmission and beaming via a zero-index photonic crystal. Applied Physics Letters. 2016;109(3).
- Feng S, Halterman K. Coherent perfect absorption in epsilon-near-zero metamaterials. Physical Review B. 2012;86(16):165103.
- Alù A, Silveirinha MG, Salandrino A, Engheta N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Physical Review B. 2007;75(15):155410.
- Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy VA, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotechnology. 2011;6(2):107-11.
- Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016;352(6287):795-7.
- Rashed AR, Yildiz BC, Ayyagari SR, Caglayan H. Hot electron dynamics in ultrafast multilayer epsilon-near-zero metamaterials. Physical Review B. 2020;101(16):165301.
- Cai W, Shalaev V. Optical Metamaterials: Fundamentals and Applications. New York: Springer; 2010.
- Kidwai O, Zhukovsky SV, Sipe JE. Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations. Physical Review A. 2012;85(5):053842.
- Shekhar P, Atkinson J, Jacob Z. Hyperbolic metamaterials: fundamentals and applications. Nano Convergence. 2014;1(1):14.
- Guo Z, Jiang H, Chen H. Hyperbolic metamaterials: From dispersion manipulation to applications. Journal of Applied Physics. 2020;127(7).
- Ferrari L, Wu C, Lepage D, Zhang X, Liu Z. Hyperbolic metamaterials and their applications. Progress in Quantum Electronics. 2015;40:1-40.
- Sreekanth KV, ElKabbash M, Alapan Y, Ilker EI, Hinczewski M, Gurkan UA, et al. Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity. EPJ Applied Metamaterials. 2017;4:1.
- Guo Z, Jiang H, Chen H. Hyperbolic metamaterials: From dispersion manipulation to applications. Journal of Applied Physics. 2020;127(7).
- Humeyra C. Hyperbolic metamaterials for utilizing epsilon-near-zero features. Proc SPIE 11795. Metamaterials, Metadevices, and Metasystems; 2021.
- Luo J, Xu Y, Chen H, Hou B, Lu W, Lai Y. Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions. Europhysics Letters. 2013;101(4):44001.
- Ji W, Luo J, Lai Y. Extremely anisotropic epsilon-near-zero media in waveguide metamaterials. Opt Express. 2019;27(14):19463-73.
- Bukhanko AF. Particular features of the optical properties of an anisotropic metamaterial with a near-zero dielectric permittivity. Optics and Spectroscopy. 2017;122(4):661-9.
- Othman M, Guclu C, Capolino F. Graphene–dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. Journal of Nanophotonics. 2013;7(1):073089.
- Luo J, Lu W, Hang Z, Chen H, Hou B, Lai Y, et al. Arbitrary Control of Electromagnetic Flux in Inhomogeneous Anisotropic Media with Near-Zero Index. Physical Review Letters. 2014;112(7):073903.
- Elser J, Wangberg R, Podolskiy VA, Narimanov EE. Nanowire metamaterials with extreme optical anisotropy. Applied Physics Letters. 2006;89(26).
- Thongrattanasiri S. Computational Nanooptics in Hyperbolic Metamaterials and Plasmonic Structures. Oregion State University; 2010.
- Gadomskii ON, Altunin KK, Rusin AA, Zubkov EG. Enhanced optical transmission of composite nanostructures of thick films with quasi-zero index of refraction. University proceedings Volga region. Physics and mathematics sciences. 2013;25(1). (In Russian)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2023 Array