Optical properties of As2S3-based suspended-core photonic crystal fiber
PDF

Keywords

suspended-core PCF
flat dispersion
high nonlinear coefficient
low loss
supercontinuum

How to Cite

1.
Hoang DT, Tran NH, Nguyen TT. Optical properties of As2S3-based suspended-core photonic crystal fiber. hueuni-jns [Internet]. 2022Dec.31 [cited 2024Nov.27];131(1D):37-48. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/6723

Abstract

In this paper, the nonlinear properties of photonic crystal fibers (PCF) with As2S3 substrate were analyzed numerically. With the suspended-core design, we achieve an anomalous dispersion regime with one or two zero-dispersion wavelengths, which is flat and has a small value at the investigated wavelength. The high nonlinear coefficient and very low confinement loss in the wavelength range of 1–3 µm, in comparison with other publications, are the outstanding advantages of these suspended-core PCFs. The highest nonlinear coefficient (28,527.374 W–1·km–1), smallest effective mode area (0.593 µm2), and low confinement loss (6.050 × 10–17 dB·m–1) at the wavelength of 1.55 µm were observed in the PCFs with a fiber diameter of 16.07 μm. Based on the numerical simulation results, we proposed two optimal structures suitable for supercontinuum generation.

https://doi.org/10.26459/hueunijns.v131i1D.6723
PDF

References

  1. Dudley JM, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Review of Modern Physics. 2006;78(4):1135.
  2. Mona Kalantari, Arash Karimkhani, and Hamed Saghaei. Ultra-Wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik. 2018;158: 142-10. DOI: https://doi.org/10.1016/j.ijleo.2017.12.014.
  3. Ghanbari A, Kashaninia A, Sadr A, Saghaei H. Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber. Optik. 2017;140:545-10.
  4. Saghaei H, Heidari V, Ebnali-Heidari M, Yazdani MR. A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik - International Journal Light and Electron Optics. 2016;127(24):11938-10.
  5. Sanchez-Cano A, Saldana-Diaz JE, Perdices L, Pinilla I, Salgado-Remacha FJ, Jarabo S. Measurement method of optical properties of ex vivo biological tissues of rats in the near-infrared range. Applied Optics. 2020;59(13):D111-7.
  6. Jiang Z, Wang T, Sun Z, Lin P, Yu C, Ma W. Transmission of low-noise supercontinuum based wide-spectral carriers in a simulated atmosphere channel with tunable turbulence. Optics Communications. 2020;458:124830.
  7. Halloran M, Traina N, Choi J, Lee T, and Yoo J. Simultaneous measurements of light hydrocarbons using supercontinuum laser absorption spectroscopy. Energy Fuels. 2020;34(3):3671-8.
  8. Lu R, Beers RV, Saeys W, Li C, Cen H. Measurement of optical properties of fruits and vegetables: a review. Postharvest Biology Technology. 2020;159:111003.
  9. Jiang Y, Karpf S, Jalali B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nature Photonics. 2020;14:14-5.
  10. Agrawal GP. Nonlinear Fiber Optics (6th ed.). London: Academic press; 2019.
  11. Rutkauskas M, Srivastava A, Reid DT. Supercontinuum generation in orientation-patterned gallium phosphide. Optica. 2020;7:172-4.
  12. Lanh VC, Hoang VT, Long VC, Borzycki K, Xuan KD, Quoc VT, et al. Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics. 2019;29(7):075107.
  13. Van LC, Hoang VT, Long VC, Borzycki K, Xuan KD, Quoc VT, et al. Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene. Laser Physics. 2020;30(3):035105.
  14. Chu Van L, Nguyen Thi T, Le Tran BT, Trong DH, Thi Minh NV, Van Le H, et al. Multi-octave supercontinuum generation in As2Se3 chalcogenide photonic crystal fiber. Photonics and Nanostructures - Fundamentals and Applications. 2022;48:100986.
  15. Thi TN, Trong DH, Le Tran BT, Van TD, Van LC. Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation. Journal of Optics. 2022;51(3):678-88.
  16. Abdelkader Medjouri, Djamel Abed. Theoretical study of coherent supercontinuum generation in chalcohalide glass photonic crystal fiber. Optik. 2020;219:165178.
  17. Tanya MM, Walter B, Kentaro F, Joanne CB, Broderick NGR, Richardson DJ. Sensing with microstructured optical fibres. Measurement Science and Technology. 2001;12(7):854.
  18. Kiang KM, Frampton K, Monro TM, Moore R, Tucknott J, Hewak DW, et al. Extruded singlemode non-silica glass holey optical fibres. Electronics Letters. 2002;38(12):546-7.
  19. Kumar VVRK, George AK, Knight JC, Russell PSJ. Tellurite photonic crystal fiber. Opt Express. 2003;11(20):2641-5.
  20. Petropoulos P, Ebendorff-Heidepriem H, Finazzi V, Moore RC, Frampton K, Richardson DJ, et al. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt Express. 2003;11(26):3568-73.
  21. Mouawad O, Picot-Clémente J, Amrani F, Strutynski C, Fatome J, Kibler B, et al. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. Opt Lett. 2014;39(9):2684-7.
  22. Gao W, El Amraoui M, Liao M, Kawashima H, Duan Z, Deng D, et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber. Opt Express. 2013;21(8):9573-83.
  23. Jing S, Mei C, Wang K, Yuan J, Yan B, Sang X, et al. Broadband and highly coherent supercontinuum generation in a suspended As2S3, ridge waveguide. Optics Communications. 2018;428:227-32.
  24. Si N, Sun L, Zhao Z, Wang X, Zhu Q, Zhang P, et al. Supercontinuum generation and analysis in extruded suspended-core As2S3 chalcogenide fibers. Applied Physics A. 2018;124(2):171.
  25. Xiong C, Magi E, Luan F, Tuniz A, Dekker S, Sanghera JS, et al. Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber. Appl Opt. 2009;48(29):5467-74.
  26. Skryabin DV, Luan F, Knight JC, Russell PStJ. Soliton self-frequency shift cancellation in photonic crystal fibers. Science. 2003;301(5640):1705-4.
  27. Genty G, Lehtonen M, Ludvigsen H. Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses. Opt Express. 2004;12(19):4614-24.
  28. Wang W, Yang H, Tang P, Zhao C, Gao J. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths. Opt Express. 2013;21(9):11215-26.
  29. Mussot A, Beaugeois M, Bouazaoui M, Sylvestre T. Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths. Opt Express. 2007;15(18):11553-63.
  30. Agrawal G. Agrawal G, editor. Nonlinear Fiber Optics (Fifth Edition). Boston: Academic Press; 2013.
  31. Laniel JM, Hô N, Vallée R, Villeneuve A. Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation. J Opt Soc Am B. 2005;22(2):437-45.
  32. Alamgir I, Shamim MHM, Amraoui ME, Messaddeq Y, Rochette M, editors. Supercontinuum Generation in Suspended Core As2S3 Tapered Fiber. 2020 IEEE Photonics Conference (IPC); 2020 28 Sept.-1 Oct. 2020.
  33. Wei C, Zhang H, Luo H, Shi H, Liu Y. Broadband mid-infrared supercontinuum generation using a novel selectively air-hole filled As2S5-As2S3 hybrid PCF. Optik. 2017;141:32-8.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 Array