Optimization of dispersion in hollow-core photonic crystal fibers filled with toluene
PDF

Keywords

PCF
C7H8
Ultra-flat dispersion
Diverse dispersion
Supercontinuum generation

How to Cite

1.
Hoang DT, Hoang MT, Nguyen TT. Optimization of dispersion in hollow-core photonic crystal fibers filled with toluene. hueuni-jns [Internet]. 2023Jun.30 [cited 2024Nov.27];132(1B):33-42. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/6833

Abstract

In this work, we thoroughly investigated the dispersion in SiO2-based photonic crystal fibers with a C7H8-infiltrated hollow core. By cleverly modifying the air hole diameters and lattice constants in the structural design, we achieved ultra-flat near-zero dispersion as small as 0.462 ps·nm–1·km–1 and diverse dispersion properties of PCFs, very beneficial for supercontinuum generation. Based on the simulation results, we propose three optimal structures with small and flat dispersion capable of generating a broad and smooth supercontinuum spectrum. The results of our study can be advantageous for fabricating fibers in low-cost all-fiber laser systems.

https://doi.org/10.26459/hueunijns.v132i1B.6833
PDF

References

  1. Alfano RR, Shapiro SL. Emission in the region 4000–7000 Å via four-photon coupling in glass. Phys Rev Lett. 1970;24(11):584-587.
  2. Dupont S, Petersen C, Thøgersen J, Agger C, Bang O, Keiding SR. IR microscopy utilizing intense supercontinuum light source. Opt. Express. 2012;20(5):4887-4892.
  3. Holzwarth R, Udem T, Hänsch TW, Knight JC, Wadsworth WJ, Russell PSJ. Optical frequency synthesizer for precision spectroscopy. Phys Rev Lett. 2000;85(1):2264-22267.
  4. Shen Y, Voronin AA, Zheltikov AM, O'Connor SP, Yakovlev VV, Sokolov AV, et al. Supercontinuum generation in large-mode-area photonic crystal fbers for coherent Raman microspectroscopy. Proc SPIE. 2018;10522:105220I.
  5. Travers JC, Chang W, Nold J, Joly NY, Russell PSJ. Ultrafast nonlinear optics in gas-flled hollow-core photonic crystal fbers. J Opt Soc Am B. 2011;28 (12):A11-A26.
  6. You YJ, Wang C, Lin YL, Zaytsev A, Xue P, Pan CL. Ultrahigh-resolution optical coherence tomography at 1.3 µm central wavelength by using a supercontinuum source pumped by noise-like pulses. Laser Phys Lett. 2016;13(2):025101.
  7. Schliesser GA, Picqué N, Hänsch TW. Mid-infrared frequency combs. Nat Photon. 2012;6(7):40-449.
  8. Lu R, Beers RV, Saeys W, Li C, Cen H. Measurement of optical properties of fruits and vegetables: a review. Postharvest Biol. Technol. 2020;159:111003.
  9. Halloran M, Traina N, Choi J, Lee T, Yoo J. Simultaneous measurements of light hydrocarbons using supercontinuum laser absorption spectroscopy. Energy Fuels. 2020;34:3671-3678.
  10. Sanchez-Cano A, Saldana-Diaz JE, Perdices L, Pinilla I, Salgado-Remacha FJ, Jarabo S. Measurement method of optical properties of ex vivo biological tissues of rats in the near-infrared range. Appl Opt. 2020;59:D111-D117.
  11. Paul BK, Ahmed K, Asaduzzaman S, Islam MS. Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: design and analysis. Sens. Bio-Sens. Res. 2017;12:36-42.
  12. Nair AA, Jayaraju M. Design and study on square lattice-based photonic crystal fibre under different air holes for supercontinuum generation. Pramana - J Phys. 2018;91:66.
  13. Hossain MdS, Sen S, Hossain MdM. Performance analysis of octagonal photonic crystal fiber (O-PCF) for various communication applications. Physica Scripta. 2021;96(5):55506.
  14. Cai W, Liu E, Feng B, Xiao W, Liu H, Wang Z, et al. Dodecagonal photonic quasi-crystal fiber with high birefringence. Journal of the Optical Society of America A. 2016;33(10):2108-2114.
  15. Vigneswaran D, Rajan MSM, Biswas B, Grover A, Ahmed K, Pau BK. Numerical investigation of spiral photonic crystal fiber (S-PCF) with supporting high order OAM modes propagation for space division multiplexing applications. Opt Quant. Electron. 2021;53:78.
  16. Chemnitz M, Gaida C, Gebhardt M, Stutzki F, Kobelke J, Tünnermann A, et al. Carbon chloride-core fibers for soliton mediated supercontinuum generation. Opt Express. 2018;26(3):3221.
  17. Lanh CV, Thuy HV, Van CL, Borzycki K, Khoa DX, Vu TQ, et al. Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Phys. 2019;29(7):075107.
  18. Yanchen G, Jinhui Y, Kuiru W, Haiyun W, Yujun C, Xian Z, et al. Generation of supercontinuum and frequency comb in a nitrobenzene-core photonic crystal fiber with all-normal dispersion profile. Opt Commun. 2021;481: 126555.
  19. Junaid S, Bierlich J, Hartung A, Meyer T, Chemnitz M, Schmidt MA. Supercontinuum generation in a carbon disulfide core microstructured optical fiber. Opt Express. 2021;29:19891-19902.
  20. Quang HD, Pniewski J, Hieu LV, Ramaniuk A, Van CL, Borzycki K, et al. Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses. Appl Opt. 2018;57(14):3738-3746.
  21. Bao Tran LT, Thuy NT, Ngoc VTM, Trung LC, Minh LV, Van CL, Khoa DX, Lanh CV. Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol. Photon. Lett. Poland. 2020;12(4):106–108. https://doi.org/10.4302/plp.v12i4.1054.
  22. Medjouri A, Simohamed LM, Ziane O, Boudrioua A, Becer Z. Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: Application to supercontinuum generation at 1.55 μm. Photonics and Nanostructures - Fundamentals and Applications. 2015;16:43-50.
  23. Maji PS, Chaudhuri PR. Supercontinuum generation in ultra-flat near zero dispersion PCF with selective liquid infiltration. Optik. 2014;125 (20):5986-5992.
  24. Huang T, Wei Q, Wu Z, Wu X, Huang P, Cheng Z, et al. Ultra-flattened normal dispersion fiber for supercontinuum and dissipative soliton resonance generation at 2 μm, IEEE Photon J. 2019;11(3):7101511.
  25. Huang T, Huang P, Cheng Z, Liao J, Wu X, Pan J. Design and analysis of a hexagonal tellurite photonic crystal fiber with broadband ultra-flattened dispersion in mid-IR. Optik. 2018;167:144-149.
  26. Ho PP, Alfano RR. Optical Kerr effect in liquids. Phys Rev A. 1979;20(5):2170-2187.
  27. Kato T, Suetsugu Y, Takagi M, Sasaoka E, Nishimura M. Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light. Opt Lett. 1995;20(9):988-990.
  28. Lanh CV, Anuszkiewicz A, Ramaniuk A, Kasztelanic R, Khoa DX, Van CL, et al. Supercontinuum generation in photonic crystal fibres with core filled with toluene. J Opt. 2017;19(12):125604.
  29. Thuy NT, Duc HT, Bao Tran LT, Trong DV, Lanh CV. Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation. J Opt. 2022.
  30. Saitoh K, Florous NJ, Koshiba M. Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach. Opt Lett. 2006;31(1):26-28.
  31. Moutzouris K, Papamichael M, Betsis SC, Stavrakas I, Hloupis G, Triantis D. Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl Phys B: Lasers and Optics. 2013;116(3):617-622.
  32. Tan CZ. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. J Non-Crystalline Solids. 1998;223(1-2):158-163.
  33. Lee YS, Lee CG, Bahloul F, Kim S, Oh K. Simultaneously achieving a large negative dispersion and a high birefringence over Er and Tm dual gain bands in a square lattice photonic crystal fiber. J Lightwave Technol. 2019;37(4):1254-1263.
  34. Moutzouris K, Papamichael M, Betsis SC, Stavrakas I, Hloupis G, Triantis D. Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl Phys B. 2013;116(3):617-622.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Array