Electrical resistivity of FeSi alloy under high pressure
PDF

Keywords

electrical resistivity
FeSi
Matthiessen's rule
impurity concentration
high pressure

How to Cite

1.
Nguyen TH. Electrical resistivity of FeSi alloy under high pressure. hueuni-jns [Internet]. 2023Jun.30 [cited 2024Nov.27];132(1B):59-64. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/6937

Abstract

The electrical resistivity of FeSi alloy under the influence of pressure is studied based on the Matthiessen's rule and saturation electrical resistivity model. Numerical calculations were conducted for FeSi up to a pressure of 100 GPa and compared with experimental data when possible. The results show that the electrical resistivity of the material diminishes gradually with pressure and saturates at high pressure. Furthermore, in this paper, we also investigated the effects of impurity concentration on the electrical resistivity of FeSi alloy. Our numerical calculations conducted for 40 and 80 Gpa pressures show that when the Si concentration is less than 20%, the electrical resistivity of the alloy increases rapidly and linearly with the Si concentration. Our electrical resistivity values are consistent with those of the recent experimental measurements.

https://doi.org/10.26459/hueunijns.v132i1B.6937
PDF

References

  1. Ouyang G, Chen X, Liang YF, Macziewski JC. Review of Fe-6.5 wt%Si high silicon steel-A promising soft magnetic material for sub-kHz application. Journal of Magnetism and Magnetic Materials. 2019;481:234-250.
  2. Liang YF, Wang S, Li H, Jiang YM, Ye F, et al. Fabrication of Fe-6.5wt%Si Ribbons by Melt Spinning Method on Large Scale. Advances in Materials Science and Engineering. 2015;2015:1-5.
  3. Zhanga Y, Luob K, Hou, M, Driscollb P, Salkee NP, Minar J, et al. Thermal conductivity of Fe-Si alloys and thermal stratification in Earth’s core. Proceedings of the National Academy of Sciences. 2021;119:1-8.
  4. Wicks JK, Smith RF, Fratanduono DE, Coppari F, Kraus RG, Newman MG, et al. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions. Science Advances. 2018;4:1-10.
  5. Litasov KD, Shatskiy A. Composition of the Earth’s core: A review. Russian Geology and Geophysics. 2016;57:22-46.
  6. McDonough WF. Compositional Model for the Earth’s Core. Treatise and Geochemistry. 2014;547-568.
  7. Fei Y, Murphy C, Shibazaki Y, Shahar A, Huang H. Thermal equation of state of hcp-iron: Constraint on the density deficit of Earth’s solid inner core. Geophysical Research Letters. 2016;43 (13):6837-6843.
  8. Lin JF, Sturhahn W, Zhao J, Shen G, Mao HK, Hemley RJ. Sound Velocities of Hot Dense Iron: Birch’s Law Revisited. Science. 2005;308:1892-1894.
  9. Williams Q. The Thermal Conductivity of Earth’s Core: A Key Geophysical Parameter’s Constraints and Uncertainties. Annu Rev Earth Planet Sci. 2018;46:47-66.
  10. Davies C, Pozzo M, Gubbins D, Alfè D. Constraints from material properties on the dynamics and evolution of Earth’s core. Nature Geoscience. 2015;8 (9):678-685.
  11. Cayman U, Wendy P. Scaling the Earth: A Sensitivity Analysis of Terrestrial Exoplanetary Interior Models. The Astrophysical Journal. 2016; 819:1-8.
  12. Mohri T, Chen Y, Kohyama M, Ogata S, Saengdeejing A, Bhattacharya SK, et al. Mechanical properties of Fe-rich Si alloy from Hamiltonian. Computational Materials. 2017;3(1):1-14.
  13. Cote PJ, Meisel LV. Origin of Saturation Effects in Electron Transport. Physical Review Letters. 1978; 40 (24):1586-1589.
  14. Matthiessen A, Vogt C. Ueber den Einfluss der Temperatur auf die elektrische Leitungsfähigkeit der Legirungen. Annalen Der Physik. 1864;198(5): 19-78.
  15. Gomi H, Ohta K, Hirose K, Labrosse S, Caracas R, Verstraete MJ, et al. The high conductivity of iron and thermal evolution of the Earth’s core. Physics of the Earth and Planetary Interiors. 2013;224:88-103.
  16. Stacey FD, Anderson OL. Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. Physics of the Earth and Planetary Interiors. 2001;124(3-4):153-162.
  17. Sata N, Hirose K, Shen G, Nakajima Y, Ohishi Y, Hirao N. Compression of FeSi, Fe3C, Fe0.95O, and FeS under the core pressures and implication for light element in the Earth’s core. J Geophys Res. 2010;115:B09204.
  18. Xu J, Zhang P, Haule K, Minar J, Wimmer S, Ebert H, et al. Thermal Conductivity and Electrical Resistivity of Solid Iron at Earth’s Core Conditions from First Principles. Phys Rev Lett. 2018;121: 096601
  19. Zhang Y, Hou M, Liu G, Zhan C, Prakapenka VB, Greenberg E, et al. Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo. Phys Rev Lett. 2020;125:078501.
  20. Zhang Y, Luo K, Hou M, Driscoll P, Salkee NP, Minar J, et al. Thermal conductivity of Fe-Si alloys and thermal stratification in Earth’s core. PNAS. 2022;119(1):1-8.
  21. Zhang Y, Hou M, Driscoll P, Salke NP, Liu J, et al. Transport properties of Fe-Ni-Si alloys at Earth’s core conditions: Insight into the viability of thermal and compositional convection. Earth and Planetary Science Letters. 2021;553:116614.
  22. Bass J. Deviations from Matthiessen’s Rule. Advances in Physics. 1972;21(91):431-604.
  23. Gomi H, Hirose K, Akai H, Fei Y. Electrical resistivity of substitutionally disordered hcp Fe–Si and Fe–Ni alloys: Chemically-induced resistivity saturation in the Earth’s core. Earth and Planetary Science Letters. 2016;451:51-61.
  24. Gomi H, Yoshino T. Impurity Resistivity of fcc and hcp Fe-Based Alloys: Thermal Stratification at the Top of the Core of Super-Earths. 2018;6:1-22.
  25. Bohnenkamp U, Sandström R, Grimvall G. Electrical resistivity of steels and face-centered-cubic iron. Journal of Applied Physics. 2002;92 (8):4402-4407.
  26. Vinet P, Ferrante J, Rose JH, Smith JR. Compressibility of solids. Journal of Geophysical Research Geophys Res. 1987;92(B9):9319-9325.
  27. Dewaele A, Loubeyre P, Occelli F, Mezouar M, Dorogokupets PI, Torrent M. Quasihydrostatic equation of state of Iron above 2 Mbar. Physical Review Letters. 2006;97(21):29-32.
  28. Matassov G. The electrical conductivity of iron–silicon alloys at high pressures and the Earth’s core. publishing house of United States; 1977.
  29. Ohta K, Kuwayama Y, Hirose K, Shimizu K, Ohishi Y. Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature. 2016;534(7605):95-98.
  30. Gunnarsson O, Calandra M, Han JE. Colloquium: Saturation of electrical resistivity. Reviews of Modern Physics. 2003;75(4):1085-1099.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2023 Array