Study on the antifungal potential of Piper betle methanol extract against Colletotrichum gloeosporioides cutinase
PDF

Keywords

Piper betle L
Colletotrichum gloeosporioide
in silico
ethanol extract
fungicidal alternative

How to Cite

1.
Nguyen Thi Ai N, Nguyen Thi Thanh H, Bui QT, Nguyen VP, Phan TQ. Study on the antifungal potential of Piper betle methanol extract against Colletotrichum gloeosporioides cutinase. hueuni-jns [Internet]. 2024Jun.27 [cited 2024Nov.23];133(1B):109-23. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/7459

Abstract

Piper betle methanol extract and its compositional characteristics had been evidenced for their effective inhibitability against rice-blast fungus. In this work, they were subjected for further computational efforts to complete their bio-chemo-pharmacological profile, and broaden their anti-fungal potentiality against Colletotrichum gloeosporioides cutinase presentative (PDB-3DEA). As the results, the most noticeable promising inhibitors particularly regard to 5 (DS -10.8 kcal.mol-1; ground-state energy -499.50 a.u.; dipole moment 2.61 Debye; no toxicity; content 49.90 %) and 6 (DS -10.9 kcal.mol-1; ground-state energy -652.15 a.u.; dipole moment 2.82 Debye; no toxicity; content 13.23 %), given by both their natural contents and predicted properties. The theoretical retrievals would reinforce the antifungal activities of P. betle and be conducive to further efforts to develop a green fungicidal alternative with broad-spectrum and cost-effective pesticidal advantages.

https://doi.org/10.26459/hueunijns.v133i1B.7459
PDF

References

  1. Budgin JB, Flaherty MJ. Alternative therapies in veterinary dermatology. Vet Clin Small Anim Pract. 2013;43(1):189-204.
  2. Tresch M, Mevissen M, Ayrle H, Melzig M, Roosje P, Walkenhorst M. Medicinal plants as therapeutic options for topical treatment in canine dermatology? A systematic review. BMC Vet Res. 2019;15(1):1-19.
  3. Man LQ, Ly NT, Lan TT, Huy NX. Cloning, expression, and purification of truncated s1 epitope and peptide CT24 fusion protein of porcine epidemic diarrhea virus in Escherichia coli. Plant Cell Biotechnol Mol Biol. 2019;112-8.
  4. Marín A, Ferreres F, Tomás-Barberán FA, Gil MI. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J Agric Food Chem. 2004;52(12):3861-9.
  5. Sahitya UL, Sri Deepthi R, Krishna M. Anthracnose, a prevalent disease in capsicum. Res J Pharm Biol Chem Sci. 2014;5(3):1583-604.
  6. Isaac S. Fungal-plant interactions. Springer Science & Business Media; 1991.
  7. Dean R, Van Kan JAL, Pretorius ZA, Hammond‐Kosack KE, Di Pietro A, Spanu PD, et al. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414-30.
  8. Than PP, Jeewon R, Hyde KD, Pongsupasamit S, Mongkolporn O, Taylor PWJ. Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol. 2008;57(3):562-72.
  9. Kim KD, Oh BJ, Yang J. Differential interactions of a Colletotrichum gloeosporioides isolate with green and red pepper fruits. Phytoparasitica. 1999;27(2):97-106.
  10. Sharma PN, Kaur M, Sharma OP, Sharma P, Pathania A. Morphological, pathological and molecular variability in Colletotrichum capsici, the cause of fruit rot of chillies in the subtropical region of north‐western India. J Phytopathol. 2005;153(4):232-7.
  11. Lakshmesha KK, Lakshmidevi N, Mallikarjuna SA. Changes in pectinase and cellulase activity of Colletotrichum capsici mutants and their effect on anthracnose disease on capsicum fruit. Arch Phytopathol Plant Prot. 2005;38(4):267-79.
  12. Byung SK. Country report of anthracnose research in Korea. In: First International Symposium on Chili Anthracnose. Seoul: Hoam Faculty House, Seoul National University; 2007. p. 24.
  13. Don LD, Van TT, Phuong Vy TT, Kieu PT. Colletotrichum spp. attacking on chilli pepper growing in Vietnam. Country report. In: Abstracts of the First International Symposium on Chilli Anthracnose. Republic of Korea: National Horticultural Research Institute, Rural Development of Administration; 2007. p. 24.
  14. Nyon MP, Rice DW, Berrisford JM, Hounslow AM, Moir AJG, Huang H, et al. Catalysis by Glomerella cingulata cutinase requires conformational cycling between the active and inactive states of its catalytic triad. J Mol Biol. 2009;385(1):226-35.
  15. Rodrigues ET, Lopes I, Pardal MÂ. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review. Environ Int. 2013;53:18-28.
  16. Staub T. Fungicide resistance: practical experience with antiresistance strategies and the role of integrated use. Annu Rev Phytopathol. 1991;29(1):421-42.
  17. Voorrips RE, Finkers R, Sanjaya L, Groenwold R. QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor Appl Genet. 2004;109:1275-82.
  18. Shinjini M RD, Pramathadhip P KM. Anti-Oxidant and Anti-Inflammatory Activities of Different Varieties of Piper Leaf Extracts (Piper Betle L.). J Nutr Food Sci. 2015;05(05):415.
  19. Voon Wendy WY, Ghali AN, Rukayadi Y, Meor Hussin AS. Application of betel leaves (Piper betle L.) extract for preservation of homemade chili bo. Int Food Res J. 2014;21(6):2399-403.
  20. Ravindran PN, Pillai GS, Balachandran I, Divakaran M. Galangal. In: Handbook of herbs and spices. Elsevier; 2012. p. 303-18.
  21. Madhumita M, Guha P, Nag A. Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity. Ind Crops Prod. 2019;138:111578.
  22. Ahmed S, Zaman S, Ahmed R, Uddin MN, Acedo Jr A, Bari ML. Effectiveness of non-chlorine sanitizers in improving the safety and quality of fresh betel leaf. LWT. 2017;78:77-81.
  23. Singtongratana N, Vadhanasin S, Singkhonrat J. Hydroxychavicol and Eugenol Profiling of Betel Leaves from Piper betle L. Obtained by Liquid-Liquid Extraction and Supercritical Fluid Extraction. Agric Nat Resour. 2013;47(4):614-23.
  24. Made N, Mara D, Nayaka W, Malida M, Sasadara V, Sanjaya DA, et al. Piper betle (L): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications. 2021;(L):1-21.
  25. Hai NTT, Bui QT, Tran TAM, Nguyen DVQ, Phan TQ, Nguyen TL, et al. Inhibition of rice-blast fungus Magnaporthe oryzae by Piper betle extracts: in vitro evidence and in silico prediction. Vietnam J Catal Adsorpt. 2021;10(1S):74-80.
  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 Revision A.2. 2009.
  27. Kassel LS. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38(6):3098-100.
  28. Schäfer A, Horn H, Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys. 1992;97(4):2571-7.
  29. Chemical Computing Group ULC. Molecular Operating Environment (MOE) [Internet]. Version 2022.02. Montreal: Chemical Computing Group ULC; 2024.
  30. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066-72.
  31. Rad AS, Ardjmand M, Esfahani MR, Khodashenas B. DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy. Spectrochim Acta Part A Mol Biomol Spectrosc. 2021;247:Article ID 119082.
  32. Rosenberg B. Electrical Conductivity of Proteins. Nature. 1962;193:364-5.
  33. Cordes M, Giese B. Electron transfer in peptides and proteins. Chem Soc Rev. 2009;38(4):892-901.
  34. Kharkyanen VN, Petrov EG, Ukrainskii II. Donor-Acceptor model of electron transfer through proteins. J Theor Biol. 1978;73(1):29-50.
  35. Farmakolojik Ö. Pharmacological and Toxicological Properties of Eugenol. Turk J Pharm Sci. 2017;14(2):201-6.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2024 Array