Abstract
We consider a ratinonal map $\phi$ from m-dimensional projective space to n-dimensional projective space that is a parameterization of m-dimensional variety. Our main goal is to study the (m-1)-dimensional fibers of $\phi$ in relation with the m-th local cohomology modules of Rees algebra of its base ideal.References
- Cox D. What is the role of algebra in applied mathematics?. Notices of the AMS.2005;52(10):1193-1198.
- Chardin M, Cutkosky SD, Tran QH. Fibers of rational maps and jacobian matrices. Journal of Algebra. 2019.
- Tran QH. Bound for the number of one-dimensional fibers of a projective morphism. Journal of Algebra. 2018;494:220-236.
- Botbol N, Busé L, Chardin M. Fitting ideals and multiple points of surface parameterizations. Journal of Algebra. 2014;420:486-508.
- Zariski O, Samuel P. Commutative algebra, Vol II. Berlin: Springer; 1960.
- Daniel G, Michael S, David E. Macaulay2. Version 1.16. Illinois: National Science Foundation; 2020.
- Chardin M. Powers of ideals and the cohomology of stalks and fibers of morphisms. Algebra & Number Theory. 2013;7(1):1-18.
- Herzog J, Simis A, Vasconcelos W. Approximation complexes of blowing-up rings. Journal of Algebra. 1982;74(2):466-493.
- Busé L, Chardin M. Implicitizing rational hypersurfaces using approximation complexes. Journal of Symbolic Computation. 2005;40(4-5): 1150-1168.
- Chardin M, Fall AL, Nagel U. Bounds for the Castelnuovo–Mumford regularity of modules. Mathematische Zeitschrift. 2007;258(1):69-80.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2020 Array