Prediction of stability constants of Cu2+ complexes with organic fluorescent ligands using thermodynamic cycle in combination with DFT theory and SMD solvent model
PDF

Keywords

Fluorescent
stability constant
complex
thermodynamic cycle
DFT

How to Cite

1.
Bay MV, Hien NK, Thanh HK, Nam PC, Quang DT. Prediction of stability constants of Cu2+ complexes with organic fluorescent ligands using thermodynamic cycle in combination with DFT theory and SMD solvent model. hueuni-jns [Internet]. 2020Nov.24 [cited 2024Nov.15];129(1D):15-23. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/5947

Abstract

Accurately predicting the stability constant ( ) of the Cu2+ complex with organic fluorescent ligands provides an important basis to design molecular fluorescent sensors for selective detection of Cu2+. With appropriate reference complexes, the calculated stability constants are in good agreement with experimental values. The  values of the predicted stability constants of Cu2+ complexes with Calcein blue (H3Cb) and FluoZin-1 (H2Fz) are 13.33 (exp. 14.27) and 6.59 (exp. 6.01), respectively. More importantly, the results could be applied to the investigation of complexes.

https://doi.org/10.26459/hueunijns.v129i1D.5947
PDF

References

  1. Lo KK. Molecular design of bioorthogonal probes and imaging reagents derived from photofunctional transition metal complexes. Accounts of Chemical Research. 2020;53(1):32-44.
  2. Thomason JW, Susetyo W, Carreira LA. Fluorescence studies of metal-humic complexes with the use of lanthanide ion probe spectroscopy. Applied Spectroscopy. 1996;50(3):401-408.
  3. Pan X, Jiang J, Li J, Wu W, Zhang J. Theoretical design of near-infrared Al3+ fluorescent probes based on salicylaldehyde acylhydrazone schiff base derivatives. Inorganic Chemistry. 2019;58(19):12618-12627.
  4. Bistri O, Reinaud O. Supramolecular control of transition metal complexes in water by a hydrophobic cavity: a bio-inspired strategy. Organic & Biomolecular Chemistry. 2015;13(10):2849-2865.
  5. Roy LE, Martin LR. Theoretical prediction of coordination environments and stability constants of lanthanum lactate complexes in solution. Dalton Transactions. 2016;45(39):15517-15522.
  6. Vukovic S, Hay BP, Bryantsev VS. Predicting stability constants for uranyl complexes using density functional theory. Inorganic Chemistry. 2015;54(8):3995-4001.
  7. Kim M, Sim E, Burke K. Ions in solution: Density corrected density functional theory (DC-DFT). The Journal of Chemical Physics. 2014;140(18):18A528.
  8. Galván-García EA, Agacino-Valdés E, Franco-Pérez M, Gómez-Balderas R. [Cu(H2O) n ]2+ (n = 1–6) complexes in solution phase: a DFT hierarchical study. Theoretical Chemistry Accounts. 2017;136(3).
  9. Klamt A. The COSMO and COSMO‐RS solvation models. WIREs Computational Molecular Science. 2017;8(1).
  10. The IUPAC stability constants database. Chemistry international - Newsmagazine for IUPAC. 2006;28(5).
  11. Shiri F, Salahinejad M, Momeni-Mooguei N, Sanchooli M. Predicting stability constants of transition metals; Y3+, La3+, and UO2 2+ with organic ligands using the 3D-QSPR methodology. Journal of Receptors and Signal Transduction. 2020;41(1):59-66.
  12. Ghasemi JB, Salahinejad M, Rofouei MK. Review of the quantitative structure–activity relationship modelling methods on estimation of formation constants of macrocyclic compounds with different guest molecules. Supramolecular Chemistry. 2011;23(9):614-629.
  13. Chen H, Shi R, Ow H. Predicting stability constants for terbium(III) complexes with dipicolinic acid and 4-substituted dipicolinic acid analogues using density functional theory. ACS Omega. 2019;4(24):20665-20671.
  14. Mohammadnejad S, Provis JL, van Deventer JS. Computational modelling of gold complexes using density functional theory. Computational and Theoretical Chemistry. 2015;1073:45-54.
  15. Devarajan D, Lian P, Brooks SC, Parks JM, Smith JC. Quantum chemical approach for calculating stability constants of mercury complexes. ACS Earth and Space Chemistry. 2018;2(11):1168-1178.
  16. Lukeš I, Šmídová I, Vlček A, Podlaha J. Study of bis (iminodiacetato) cuprates(II) and tetrakis (iminodiacetato) cuprates(II). A Chemical Papers. 1984;38(3):331-339.
  17. Das AK. Stabilities of ternary complexes of cobalt(II), nickel(II), copper(II) and zinc(II) involving aminopolycarboxylic acids and heteroaromaticN-bases as primary ligands and benzohydroxamic acid as a secondary ligand. Transition Metal Chemistry. 1990;15(5):399-402.
  18. Casasnovas R, Ortega-Castro J, Donoso J, Frau J, Muñoz F. Theoretical calculations of stability constants and pKa values of metal complexes in solution: application to pyridoxamine–copper(II) complexes and their biological implications in AGE inhibition. Physical Chemistry Chemical Physics. 2013;15(38):16303.
  19. Pandey R, Kumar A, Xu Q, Pandey DS. Zinc(II), copper(II) and cadmium(II) complexes as fluorescent chemosensors for cations. Dalton Transactions. 2020;49(3):542-568.
  20. Pliego JR. Reply to comment on: ‘Thermodynamic cycles and the calculation of pKa’ [Chem. Phys. Lett. 367 (2003) 145]. Chemical Physics Letters. 2003;381(1-2):246-247.
  21. Bryantsev VS, Diallo MS, Goddard III WA. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. The Journal of Physical Chemistry B. 2008;112(32):9709-9719.
  22. Rebollar-Zepeda AM, Campos-Hernández T, Ramírez-Silva MT, Rojas-Hernández A, Galano A. Searching for computational strategies to accurately predict pKas of large phenolic derivatives. Journal of Chemical Theory and Computation. 2011;7(8):2528-2538.
  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16 Rev. A.03. Wallingford, CT2016.
  24. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B. 2009;113(18):6378-6396.
  25. Alexander MD. Chelate ring conformations and substitution rates of cobalt(III) complexes. Inorganic Chemistry. 1966;5(11):2084-2084.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 Array