Dispersion and nonlinearity properties of small solid-core photonic fibers with As2Se3 substrate
PDF

Keywords

Keywords: Small solid core photonic crystal fibers, chromatic dispersion, effective refractive index, confinement loss, nonlinear coefficient and nonlinear properties

How to Cite

1.
Nguyen TT, Hoang TD, Le TBT, Dang VT, Chu VL. Dispersion and nonlinearity properties of small solid-core photonic fibers with As2Se3 substrate. hueuni-jns [Internet]. 2021Dec.31 [cited 2024Nov.15];130(1D):55-64. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/6397

Abstract

Characteristics of As2Se3 photonic crystal fibers (PCFs) with a solid-core and small-core diameter are numerically investigated in the long-wavelength range (from 2 to 10 μm). A full modal analysis and optical properties of designed photonic crystal fibers with lattice constant Λ and filling factor d/Λ are presented in terms of chromatic dispersion, effective refractive index, nonlinear coefficients, and confinement loss. The simulation results show that a high nonlinear coefficient of 4410.303 W–1·km–1 and a low confinement loss of 10−20 dB·km–1 can simultaneously be achieved in the proposed PCFs at a 4.5 μm wavelength. Chromatic dispersions are flat. The values of dispersion increase with increasing filling factor d/Λ and decrease with the increase in lattice constant Λ. In particular, some chromatic dispersion curves also cut the zero-dispersion line at two points. The flat dispersion feature, high nonlinearity, and small confinement loss of the proposed photonic crystal fiber structure make it suitable for supercontinuum.

https://doi.org/10.26459/hueunijns.v130i1D.6397
PDF

References

  1. Yeh P, Yariv A, Marom E. Theory of Bragg fiber. Journal of the Optical Society of America. 1978;68(9):1196-5. DOI: https://doi.org/10.1364/JOSA.68.001196
  2. Knight JC, Birks TA, Russell PSJ, Atkin DM. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters. 1996;21(19):1547-2. DOI: https://doi.org/10.1364/OL.21.001547
  3. Sinha RK, Varshney SK. Dispersion properties of photonic crystal fibers. Microwave and Optical Technology Letters. 2003;37:129-132. DOI: https://doi.org/10.1002/mop.10845
  4. Maji PS, Roy Chaudhuri P. Supercontinuum generation in ultra-flat near zero dispersion PCF with selective liquid infiltration. Optik. 2014;125(20):5986-92. DOI: https://doi.org/10.1016/j.ijleo.2014.07.026
  5. Lin-Ping S, Wei-Ping H, Shui-Sheng J. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology. 2003;21(7):1644-1651. DOI: https://doi.org/10.1109/JLT.2003.814397
  6. Ferrando A, Silvestre E, Miret JJ, Andrés P. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters. 2000;25(11):790-2. DOI: https://doi.org/10.1364/OL.25.000790
  7. Ferrando A, Silvestre E, Andrés P, Miret JJ, Andrés MV. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express. 2001;9(13):687-97. DOI: https://doi.org/10.1364/OE.9.000687
  8. Saitoh K, Koshiba M, Hasegawa T, Sasaoka E. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Optics Express. 2003;11(8):843-52. DOI: https://doi.org/10.1364/OE.11.000843
  9. Poletti F, Finazzi V, Monro TM, Broderick NGR, Tse V, Richardson DJ. Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Optics Express. 2005;13(10): 3728-36. DOI: https://doi.org/10.1364/OPEX.13.003728
  10. Huttunen A, Törmä P. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area. Optics Express. 2005;13(2):627-35. DOI: https://doi.org/10.1364/OPEX.13.000627
  11. Saitoh K, Koshiba M. Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technology Letters. 2003;15(10):1384-6. DOI: https://doi.org/10.1109/LPT.2003.818215
  12. Kubota H, Kawanishi S, Koyanagi S, Tanaka M, Yamaguchi S. Absolutely single polarization photonic crystal fiber. IEEE Photonics Technology Letters. 2004;16(1):182-4. DOI: https://doi.org/10.1109/LPT.2003.819415
  13. Dobb H, Kalli K, Webb DJ. Temperature-insensitive long period grating sensors in photonic crystal fibre. Electronics Letters. 2004;40(11):657-8. DOI: https://doi.org/10.1049/el:20040433
  14. Dong X, Tam HY, Shum P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters. 2007;90(15):151113. DOI: https://doi.org/10.1063/1.2722058
  15. Hartung A, Heidt AM, Bartelt H. Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation. Optics Express. 2011;19(8):7742-9. DOI: https://doi.org/10.1364/OE.19.007742
  16. Xueming L, Xiaoqun Z, Xiufeng T, Junhong N, Jianzhong H, Teck Yoong C, et al. Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber. IEEE Photonics Technology Letters. 2005;17(8):1626-8. DOI: https://doi.org/10.1109/LPT.2005.851024
  17. Agrawal A, Kejalakshmy N, Chen J, Rahman BMA, Grattan KTV. Golden spiral photonic crystal fiber: polarization and dispersion properties. Optics Letters. 2008;33(22): 2716-8. DOI: https://doi.org/10.1364/OL.33.002716
  18. Stefaniuk T, Le Van H, Pniewski J, Cao Long V, Ramaniuk A, Grajewski K, et al. Dispersion engineering in soft glass photonic crystal fibers infiltrated with liquids. Event: 16th Conference on Optical Fibers and Their Applications, Lublin and Naleczow, Poland. 2015;9816. DOI: https://doi.org/10.1117/12.2229482
  19. Xuan KD, Van LC, Long VC, Dinh QH, Van Mai L, Trippenbach M, et al. Influence of temperature on dispersion properties of photonic crystal fibers infiltrated with water. Optical and Quantum Electronics. 2017;49:87. DOI: https://doi.org/10.1007/s11082-017-0929-3
  20. Van Lanh C, Hoang VT, Long VC, Borzycki K, Xuan KD, Quoc VT, et al. Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation. Laser Physics. 2019;29(7): 075107. DOI: https://doi.org/10.1088/1555-6611/ab2115
  21. Van Le H, Cao VL, Nguyen HT, Nguyen AM, Buczyński R, Kasztelanic R. Application of ethanol infiltration for ultra-flattened normal dispersion in fused silica photonic crystal fibers. Laser Physics. 2018;28(11):115106. DOI: https://doi.org/10.1088/1555-6611/aad93a
  22. Fatome J, Fortier C, Nguyen TN, Chartier T, Smektala F, Messaad K, et al. Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers. Journal of Lightwave Technology. 2009;27(11):1707-15. DOI: https://doi.org/10.1109/JLT.2009.2021672
  23. Vigreux-Bercovici C, Ranieri V, Labadie L, Broquin JE, Kern P, Pradel A. Waveguides based on Te2As3Se5 thick films for spatial interferometry. Journal of Non-Crystalline Solids. 2006;352(23-25):2416-9. DOI: https://doi.org/10.1016/j.jnoncrysol.2006.03.018
  24. Price JHV, Monro TM, Ebendorff-Heidepriem H, Poletti F, Horak P, Finazzi V, et al. Mid-IR Supercontinuum Generation from Nonsilica Microstructured Optical Fibers. IEEE Journal of Selected Topics in Quantum Electronics. 2007;13(3):738-49. DOI: https://doi.org/10.1109/JSTQE.2007.896648
  25. Domachuk P, Wolchover NA, Cronin-Golomb M, Wang A, George AK, Cordeiro CMB, et al. Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs. Optics Express. 2008;16(10): 7161-8. DOI: https://doi.org/10.1364/OE.16.007161
  26. Ta’eed VG, Shokooh-Saremi M, Fu L, Moss DJ, Rochette M, Littler ICM, et al. Integrated all-optical pulse regenerator in chalcogenide waveguides. Optics Letters. 2005;30(21):2900-2. DOI: https://doi.org/10.1364/OL.30.002900
  27. Pelusi MD, Luan F, Magi E, Lamont MRE, Moss DJ, Eggleton BJ, et al. High bit rate all-optical signal processing in a fiber photonic wire. Optics Express. 2008;16(15):11506-12. DOI: https://doi.org/10.1364/OE.16.011506
  28. Varshney SK, Saitoh K, Iizawa K, Tsuchida Y, Koshiba M, Sinha RK. Raman amplification characteristics of As2Se3 photonic crystal fibers. Optics Letters. 2008;33(21):2431-3. DOI: https://doi.org/10.1364/OL.33.002431
  29. Fu LB, Rochette M, Ta’eed VG, Moss DJ, Eggleton BJ. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. Optics Express. 2005;13(19):7637-44. DOI: https://doi.org/10.1364/OPEX.13.007637
  30. Florea C, Bashkansky M, Dutton Z, Sanghera J, Pureza P, Aggarwal I. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers. Optics Express. 2006;14(25):12063-70. DOI: https://doi.org/10.1364/OE.14.012063
  31. Dabas B, Sinha RK. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Optics Communications. 2010;283(7):1331-7. DOI: https://doi.org/10.1016/j.optcom.2009.11.091
  32. Su H, Zhang Y, Ma K, Zhao Y, Wang J. High-temperature sensor based on suspended-core microstructured optical fiber. Optics Express. 2019;27(15):20156-64. DOI: https://doi.org/10.1364/OE.27.020156
  33. Rim Cherif , Mourad Zghal. Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers. International Journal of Optics. 2013;2013:1-5. DOI: https://doi.org/10.1155/2013/876474
  34. Li F, He M, Zhang X, Chang M, Wu Z, Liu Z, et al. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding. Optical Materials. 2018;79:137-46. DOI: https://doi.org/10.1016/j.optmat.2018.03.025
  35. Mohsin KM, Alam MS, Hasan DMN, Hossain MN. Dispersion and nonlinearity properties of a chalcogenide As2Se3 suspended core fiber. Applied Optics. 2011;50(25);E102-E7. DOI: https://doi.org/10.1364/AO.50.00E102
  36. Lumerical Eigenmode Expansion (EME) Solver, https://www.lumerical.com/tcad products/mode/EME, accessed 29 August (2016).
  37. Cherif R, Ben Salem A, Zghal M, Besnard P, Chartier T, Brilland L, et al. Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Optical Engineering. 2010;49(9):095002. DOI: https://doi.org/10.1117/1.3488042
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array