A COMPACT IMBEDDING OF RIEMANNIAN SYMMETRIC SPACES

Tóm tắt

Let G be a connected real semisimple Lie group with finite center and θ be a Cartan involution of G. Suppose that K is the maximal compact subgroup of G corresponding to the Cartan involution θ. The coset space X = G/K is then a Riemannian symmetric space. In this paper, by choosing the reduced root system Σ0 = {α ∈ Σ | 2α /∈ Σ; α 2 ∈/ Σ} insteads of the restricted root system Σ and using the action of the Weyl group, firstly we construct a compact real analytic manifold Xb 0 in which the Riemannian symmetric space G/K is realized as an open subset and that G acts analytically on it, then we consider the real analytic structure of Xb 0 induced from the real analytic srtucture of AbIR, the compactification of the corresponding vectorial part.
https://doi.org/10.26459/hueuni-jns.v127i1A.4825
PDF (English)
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2018 Array