Tóm tắt
Chúng tôi đề xuất một vật liệu cathode mới Na2Fe3(SO4)4 có thể dùng cho pin sodium-ion dựa theo lý thuyết phiếm hàm mật độ. Cấu trúc tinh thể, tính bền, điện thế trung bình và cơ chế khuếch tán được khảo sát cẩn thận để đánh giá các tính chất điện hóa. Vật liệu đề xuất có thể đạt điện thế cao 4.0 V trong quá trình giải phóng ion Na. Chuẩn hạt polaron nhỏ ưu tiên hình thành tại vị trí Fe gần nhất với vị trí khuyết ion Na và chuyển động đồng thời với vị khuyết ion Na trong suốt quá trình chuyển động của nó. Bốn quá trình khuếch tán của tổ hợp vị trí khuyết ion Na và polaron được khảo sát gồm có 2 quá trình song song và 2 quá trình chéo. Sự khác biệt về năng lượng kích hoạt giữa các quá trình song song và chéo cho thấy hiệu ứng đáng kể của các polaron nhỏ đến quá trình khuếch tán của vị trí khuyết ion Na. Chúng tôi nhận thấy quá trình song song dọc theo hướng [001] có năng lượng kích hoạt thấp nhất là 808 meV, điều này gợi ý rằng vị trí khuyết ion Na ưu tiên khuếch tán theo một đường zigzag dọc theo hướng [001].
Tài liệu tham khảo
- Kavanagh L, Keohane J, Garcia Cabellos G, Lloyd A, Cleary J. Global lithium sources—industrial use and future in the electric vehicle industry: A review. Resources. 2018;7(3):57. DOI: https://doi.org/10.3390/resources7030057
- Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics. 1981 08;3-4:165-169. DOI: https://doi.org/10.1016/0167-2738(81)90076-x
- Fleischer M. The abundance and distribution of the chemical elements in the earth's crust. Journal of Chemical Education. 1954;31(9):446. DOI: https://doi.org/10.1021/ed031p446
- Zhu Y, Xu Y, Liu Y, Luo C and Wang C. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale. 2013;5(2):780-787. DOI: https://doi.org/10.1039/c2nr32758a
- Okada S, Takahashi Y, Kiyabu T, Doi T, Yamaki J, Nishida T. Layered transition metal oxides as cathodes for sodium secondary battery. ECS Meeting Abstracts. 2006.
- Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials. 2012;11(6):512-517. DOI: https://doi.org/10.1038/nmat3309
- EllisBL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nature Materials. 2007;6(10):749-753. DOI: https://doi.org/10.1038/nmat2007
- Tang W, Song X, Du Y, Peng C, Lin M, Xi S, et al. High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A. 2016;4(13):4882-4892. DOI: https://doi.org/10.1039/c6ta01111j
- Barpanda P, Ye T, Nishimura S-i, Chung S-C, Yamada Y, Okubo M, et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochemistry Communications. 2012;24:116-119. DOI: https://doi.org/10.1016/j.elecom.2012.08.028
- Kim H, Park I, Seo D-H, Lee S, Kim S-W, Kwon WJ, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. Journal of the American Chemical Society. 2012 06 14;134(25):10369-10372. DOI: https://doi.org/10.1021/ja3038646
- Barpanda P, Oyama G, Ling CD and Yamada A. Kröhnkite-Type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries. Chemistry of Materials. 2014;26(3):1297-1299. DOI: https://doi.org/10.1021/cm4033226
- Gao J, Sha X, Liu X, Song L, Zhao P. Preparation, structure and properties of Na2Mn3(SO4)4: a new potential candidate with high voltage for Na-ion batteries. Journal of Materials Chemistry A. 2016;4(30):11870-11877. DOI: https://doi.org/10.1039/c6ta02629j
- Dinh VA, Nara J, Ohno T. A New Insight into the Polaron–Li Complex Diffusion in Cathode Material LiFe1-yMnyPO4 for Li Ion Batteries. Applied Physics Express. 2012;5(4):045801. DOI: https://doi.org/10.1143/apex.5.045801
- Bui KM, Dinh VA , Ohno T. Diffusion Mechanism of Polaron–Li Vacancy Complex in Cathode Material Li2FeSiO4. Applied Physics Express. 2012;5(12):125802. DOI: https://doi.org/10.1143/apex.5.125802
- Duong DM, Dinh VA, Ohno T. Quasi-Three-Dimensional Diffusion of Li ions in Li3FePO4CO3: First-Principles Calculations for Cathode Materials of Li-Ion Batteries. Applied Physics Express. 2013;6(11):115801. DOI: https://doi.org/10.7567/apex.6.115801
- Bui KM, Dinh VA, Okada S, Ohno T. Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and eletronic structures and polaron-Na vacancy complex diffusion. Physical Chemistry Chemical Physics. 2015;17(45):30433-30439. DOI: https://doi.org/10.1039/c5cp05323d
- Bui KM, Dinh VA, Okada S, Ohno T. Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study. Physical Chemistry Chemical Physics. 2016;18(39):27226-27231. DOI: https://doi.org/10.1039/c6cp05164b
- Debbichi M, Debichi N, Dinh VA, Lebegue S. First principles study of the crystal, electronic structure, and diffusion mechanism of polaron-Na vacancy of Na3MnPO4CO3 for Na-ion battery applications. Journal of Physics D: Applied Physics. 2016;50(4):045502. DOI: https://doi.org/10.1088/1361-6463/aa518d
- Luong HD, Pham TD, Morikawa Y, Shibutani Y, Dinh VA. Diffusion mechanism of Na ion–polaron complex in potential cathode materials NaVOPO4 and VOPO4 for rechargeable sodium-ion batteries. Physical Chemistry Chemical Physics. 2018;20(36):23625-23634. DOI: https://doi.org/10.1039/c8cp03391a
- Tran TL, Luong HD, Duong DM, Dinh NT, Dinh VA. Hybrid functional study on small polaron formation and ion diffusion in the cathode material Na2Mn3(SO4)4. ACS Omega. 2020;5(10):5429-5435. DOI: https://doi.org/10.1021/acsomega.0c00009
- Luong HD, Dinh VA, Momida H, Oguchi T. Insight into the diffusion mechanism of sodium ion – polaron complexes in orthorhombic P2 layered cathode oxide NaxMnO2. Physical Chemistry Chemical Physics. 2020;22(32):18219-18228. DOI: https://doi.org/10.1039/d0cp03208e
- Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Physical Review B. 1993;48(17):13115-13118. DOI: https://doi.org/10.1103/physrevb.48.13115
- Kresse G, Joubert D. From ultrasoft psuedopotentials to the projector augmented-wave method. Physical Review B. 1999;59(3):1758-1775. DOI: https://doi.org/10.1103/physrevb.59.1758
- Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter. 1994;6(40):8245-8257. DOI: https://doi.org/10.1088/0953-8984/6/40/015
- Kresse G, Furthmuller J. Efficiency of Ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science. 1996 07;6(1):15-50. DOI: https://doi.org/10.1016/0927-0256(96)00008-0
- Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18):3865-3868. DOI: https://doi.org/10.1103/physrevlett.77.3865
- Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Physical Review B. 2006;73(19). DOI: https://doi.org/10.1103/physrevb.73.195107
- Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Materialia. 2015;108:1-5. DOI: https://doi.org/10.1016/j.scriptamat.2015.07.021
- Pick RM, Cohen MH, Martin RM. Microscopic theory of force constants in the adiabatic approximation. Physical Review B. 1970;1(2):910-920. DOI: https://doi.org/10.1103/physrevb.1.910
- Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics. 2000;113(22):9978-9985. DOI: https://doi.org/10.1063/1.1323224
- Dwibedi D, Araujo RB, Chakraborty S, Shanbogh PP, Sundaram NG, Ahuja R. Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. Journal of Materials Chemistry A. 2015;3(36):18564-18571. DOI: https://doi.org/10.1039/c5ta04527d
- Zhao J, Zhao L, Dimov N, Okada S, Nishida T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. Journal of The Electrochemical Society. 2013;160(5):A3077-A3081. DOI: https://doi.org/10.1149/2.007305jes
- Wongittharom N, Lee T-C, Wang C-H, Wang Y-C, Chang J-K. Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. Journal of Materials Chemistry A. 2014;2(16):5655. DOI: https://doi.org/10.1039/c3ta15273a
công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International . p>
Bản quyền (c) 2021 Array