Na2Fe3(SO4)4 là vật liệu cathode mới với điện thế cao dùng cho pin sodium-ion

Tóm tắt

Chúng tôi đề xuất một vật liệu cathode mới Na2Fe3(SO4)4 có thể dùng cho pin sodium-ion dựa theo lý thuyết phiếm hàm mật độ. Cấu trúc tinh thể, tính bền, điện thế trung bình và cơ chế khuếch tán được khảo sát cẩn thận để đánh giá các tính chất điện hóa. Vật liệu đề xuất có thể đạt điện thế cao 4.0 V trong quá trình giải phóng ion Na. Chuẩn hạt polaron nhỏ ưu tiên hình thành tại vị trí Fe gần nhất với vị trí khuyết ion Na và chuyển động đồng thời với vị khuyết ion Na trong suốt quá trình chuyển động của nó. Bốn quá trình khuếch tán của tổ hợp vị trí khuyết ion Na và polaron được khảo sát gồm có 2 quá trình song song và 2 quá trình chéo. Sự khác biệt về năng lượng kích hoạt giữa các quá trình song song và chéo cho thấy hiệu ứng đáng kể của các polaron nhỏ đến quá trình khuếch tán của vị trí khuyết ion Na. Chúng tôi nhận thấy quá trình song song dọc theo hướng [001] có năng lượng kích hoạt thấp nhất là 808 meV, điều này gợi ý rằng vị trí khuyết ion Na ưu tiên khuếch tán theo một đường zigzag dọc theo hướng [001].

https://doi.org/10.26459/hueunijns.v130i1B.6190
PDF (English)

Tài liệu tham khảo

  1. Kavanagh L, Keohane J, Garcia Cabellos G, Lloyd A, Cleary J. Global lithium sources—industrial use and future in the electric vehicle industry: A review. Resources. 2018;7(3):57. DOI: https://doi.org/10.3390/resources7030057
  2. Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics. 1981 08;3-4:165-169. DOI: https://doi.org/10.1016/0167-2738(81)90076-x
  3. Fleischer M. The abundance and distribution of the chemical elements in the earth's crust. Journal of Chemical Education. 1954;31(9):446. DOI: https://doi.org/10.1021/ed031p446
  4. Zhu Y, Xu Y, Liu Y, Luo C and Wang C. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale. 2013;5(2):780-787. DOI: https://doi.org/10.1039/c2nr32758a
  5. Okada S, Takahashi Y, Kiyabu T, Doi T, Yamaki J, Nishida T. Layered transition metal oxides as cathodes for sodium secondary battery. ECS Meeting Abstracts. 2006.
  6. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials. 2012;11(6):512-517. DOI: https://doi.org/10.1038/nmat3309
  7. EllisBL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nature Materials. 2007;6(10):749-753. DOI: https://doi.org/10.1038/nmat2007
  8. Tang W, Song X, Du Y, Peng C, Lin M, Xi S, et al. High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A. 2016;4(13):4882-4892. DOI: https://doi.org/10.1039/c6ta01111j
  9. Barpanda P, Ye T, Nishimura S-i, Chung S-C, Yamada Y, Okubo M, et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochemistry Communications. 2012;24:116-119. DOI: https://doi.org/10.1016/j.elecom.2012.08.028
  10. Kim H, Park I, Seo D-H, Lee S, Kim S-W, Kwon WJ, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. Journal of the American Chemical Society. 2012 06 14;134(25):10369-10372. DOI: https://doi.org/10.1021/ja3038646
  11. Barpanda P, Oyama G, Ling CD and Yamada A. Kröhnkite-Type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries. Chemistry of Materials. 2014;26(3):1297-1299. DOI: https://doi.org/10.1021/cm4033226
  12. Gao J, Sha X, Liu X, Song L, Zhao P. Preparation, structure and properties of Na2Mn3(SO4)4: a new potential candidate with high voltage for Na-ion batteries. Journal of Materials Chemistry A. 2016;4(30):11870-11877. DOI: https://doi.org/10.1039/c6ta02629j
  13. Dinh VA, Nara J, Ohno T. A New Insight into the Polaron–Li Complex Diffusion in Cathode Material LiFe1-yMnyPO4 for Li Ion Batteries. Applied Physics Express. 2012;5(4):045801. DOI: https://doi.org/10.1143/apex.5.045801
  14. Bui KM, Dinh VA , Ohno T. Diffusion Mechanism of Polaron–Li Vacancy Complex in Cathode Material Li2FeSiO4. Applied Physics Express. 2012;5(12):125802. DOI: https://doi.org/10.1143/apex.5.125802
  15. Duong DM, Dinh VA, Ohno T. Quasi-Three-Dimensional Diffusion of Li ions in Li3FePO4CO3: First-Principles Calculations for Cathode Materials of Li-Ion Batteries. Applied Physics Express. 2013;6(11):115801. DOI: https://doi.org/10.7567/apex.6.115801
  16. Bui KM, Dinh VA, Okada S, Ohno T. Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and eletronic structures and polaron-Na vacancy complex diffusion. Physical Chemistry Chemical Physics. 2015;17(45):30433-30439. DOI: https://doi.org/10.1039/c5cp05323d
  17. Bui KM, Dinh VA, Okada S, Ohno T. Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study. Physical Chemistry Chemical Physics. 2016;18(39):27226-27231. DOI: https://doi.org/10.1039/c6cp05164b
  18. Debbichi M, Debichi N, Dinh VA, Lebegue S. First principles study of the crystal, electronic structure, and diffusion mechanism of polaron-Na vacancy of Na3MnPO4CO3 for Na-ion battery applications. Journal of Physics D: Applied Physics. 2016;50(4):045502. DOI: https://doi.org/10.1088/1361-6463/aa518d
  19. Luong HD, Pham TD, Morikawa Y, Shibutani Y, Dinh VA. Diffusion mechanism of Na ion–polaron complex in potential cathode materials NaVOPO4 and VOPO4 for rechargeable sodium-ion batteries. Physical Chemistry Chemical Physics. 2018;20(36):23625-23634. DOI: https://doi.org/10.1039/c8cp03391a
  20. Tran TL, Luong HD, Duong DM, Dinh NT, Dinh VA. Hybrid functional study on small polaron formation and ion diffusion in the cathode material Na2Mn3(SO4)4. ACS Omega. 2020;5(10):5429-5435. DOI: https://doi.org/10.1021/acsomega.0c00009
  21. Luong HD, Dinh VA, Momida H, Oguchi T. Insight into the diffusion mechanism of sodium ion – polaron complexes in orthorhombic P2 layered cathode oxide NaxMnO2. Physical Chemistry Chemical Physics. 2020;22(32):18219-18228. DOI: https://doi.org/10.1039/d0cp03208e
  22. Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Physical Review B. 1993;48(17):13115-13118. DOI: https://doi.org/10.1103/physrevb.48.13115
  23. Kresse G, Joubert D. From ultrasoft psuedopotentials to the projector augmented-wave method. Physical Review B. 1999;59(3):1758-1775. DOI: https://doi.org/10.1103/physrevb.59.1758
  24. Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter. 1994;6(40):8245-8257. DOI: https://doi.org/10.1088/0953-8984/6/40/015
  25. Kresse G, Furthmuller J. Efficiency of Ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science. 1996 07;6(1):15-50. DOI: https://doi.org/10.1016/0927-0256(96)00008-0
  26. Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18):3865-3868. DOI: https://doi.org/10.1103/physrevlett.77.3865
  27. Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Physical Review B. 2006;73(19). DOI: https://doi.org/10.1103/physrevb.73.195107
  28. Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Materialia. 2015;108:1-5. DOI: https://doi.org/10.1016/j.scriptamat.2015.07.021
  29. Pick RM, Cohen MH, Martin RM. Microscopic theory of force constants in the adiabatic approximation. Physical Review B. 1970;1(2):910-920. DOI: https://doi.org/10.1103/physrevb.1.910
  30. Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics. 2000;113(22):9978-9985. DOI: https://doi.org/10.1063/1.1323224
  31. Dwibedi D, Araujo RB, Chakraborty S, Shanbogh PP, Sundaram NG, Ahuja R. Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. Journal of Materials Chemistry A. 2015;3(36):18564-18571. DOI: https://doi.org/10.1039/c5ta04527d
  32. Zhao J, Zhao L, Dimov N, Okada S, Nishida T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. Journal of The Electrochemical Society. 2013;160(5):A3077-A3081. DOI: https://doi.org/10.1149/2.007305jes
  33. Wongittharom N, Lee T-C, Wang C-H, Wang Y-C, Chang J-K. Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. Journal of Materials Chemistry A. 2014;2(16):5655. DOI: https://doi.org/10.1039/c3ta15273a
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2021 Array