LOẠI BỎ XANH METYLEN BẰNG PHƯƠNG PHÁP ĐIỆN DI LẮNG ĐỌNG KẾT HỢP VỚI VẬT LIỆU MnO2/GO
PDF

Từ khóa

MnO2/GO
điện di lắng đọng
xanh metylen electrophoretic deposition
methylene blue

Cách trích dẫn

1.
Hồ XAV, Vũ TTV, Nguyễn HP. LOẠI BỎ XANH METYLEN BẰNG PHƯƠNG PHÁP ĐIỆN DI LẮNG ĐỌNG KẾT HỢP VỚI VẬT LIỆU MnO2/GO. hueuni-jns [Internet]. 30 Tháng Chín 2022 [cited 15 Tháng Mười-Một 2024];131(1C):17-24. Available at: http://222.255.146.83/index.php/hujos-ns/article/view/6893

Tóm tắt

Vật liệu graphen oxit (GO) được tổng hợp bằng phương pháp Hummer cải tiến và biến tính với mangan đioxit (MnO2) bằng phương pháp hóa học để thu được vật liệu tổ hợp MnO2/GO. Một số tính chất đặc trưng của vật liệu tổ hợp được đánh giá bằng phổ hồng ngoại, phổ UV-Vis, hiển vi điện tử quét kết hợp với quang phổ tán xạ năng lượng tia X và ảnh mapping. Các thông số trong phương pháp điện di lắng đọng (EPD) như pH, thế điện phân, thời gian điện phân, nồng độ clorua natri và khối lượng vật liệu tổ hợp đã được nghiên cứu. Vật liệu MnO2/GO có khả năng loại màu và nhu cầu oxy hóa học của xanh metylen với hiệu suất 99,64 và 85,85% với phương pháp EPD. Kết quả cho thấy tiềm năng của của phương pháp EPD kết hợp với vật liệu MnO2/GO để loại bỏ chất màu hữu cơ trong môi trường nước.

https://doi.org/10.26459/hueunijns.v131i1C.6893
PDF

Tài liệu tham khảo

  1. Đức ĐS. Xác định điều kiện tối ưu keo tụ phẩm nhuộm basic red 46 trong nước thải bằng pac theo phương pháp quy hoạch thực nghiệm. Tạp chí Phát triển Khoa học và Công nghệ. 2010;13(1):29-34.
  2. Oanh PT, Hương ĐT, Phengkhammy L. Nghiên cứu hấp phụ metylen xanh bằng vật liệu graphen – bùn đỏ hoạt hóa trong môi trường axit. Tạp chí phân tích Hóa, Lý và Sinh học. 2017;22(2):94-98.
  3. Vinh LX, Phụng LT, Hiên TT. Nghiên cứu xử lý nước thải dệt nhuộm bằng UV/Fenton. Tạp chí Phát triển Khoa học và Công nghệ. 2015;18(6):29-34.
  4. Thinh NN, Anh NV, Huong NTA. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from green method. Tạp chí phân tích Hóa Lý và Sinh học. 2020;25(2):245-250.
  5. Tuyền LTT, Quang ĐA, Toàn TTT, Tùng TQ, Hòa TT. Các yếu tố ảnh hưởng đến phản ứng phân hủy quang hóa xanh methylene bằng hệ xúc tác CeO2-TiO2 nanotubes. Tạp chí Khoa học Đại học Huế: Khoa học Tự nhiên. 2018;127(1B):15-26.
  6. Ánh HQ, Trang QTT, Ngọ NĐ. Nghiên cứu khả năng hấp phụ thuốc nhuộm RR195 trong dung dịch nước trên vật liệu graphen oxit và graphen. Tạp chí phân tích Hóa, Lý và Sinh học. 2015;20(4):20-27.
  7. Assis LKD, Damasceno BS, Carvalho MN, Oliveira EHC, Ghislandi MG. Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of colored textile dyes from wastewater. Environmental Technology. 2019;41:1-22.
  8. Sabna V., Thampi SG. and Chandrakaran S. Adsorptive removal of cationic and anionic dyes using graphene oxide. Water Science and Technology. 2018;78:732-742.
  9. Phong NH, Vũ HXA, Chi THT, Khánh HN, Luyện TĐ, Thảo LTD. Nghiên cứu loại bỏ màu của phẩm nhuộm DB-CC bằng phương pháp điện di lắng đọng. Tạp chí Phân tích Hóa, Lý và Sinh học. 2021;26(3A):121-126.
  10. Vinh NĐ, Trang VT. Removal of methylene blue from water by electrocoagulation. TNU Journal of Science and Technology. 2020;225(13):101-106.
  11. Avcu E, Bastan FE, Abdullah HZ, Rehman MAU, Avcu YY, Boccaccini AR. Electrophoretic Deposition of Chitosan-based Composite Coatings for Biomedical Applications: A Review. Progress in Materials Science. 2019;103:69-108.
  12. Diba M, Fam DWH, Boccaccini AR, Shaffer MSP. Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science. 2016;82:83-117.
  13. Toh SY, Loh KS, Kamarudin SK, Daud WRW. Graphen Production via Electrochemical Reduction of Graphene Oxide: Synthesis and Characterisation. Chemical Engineering Journal. 2014;251:422-434.
  14. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, et al. Improved Synthesis of Graphene Oxide. American Chemical Society Nano. 2010;4:4806-4814.
  15. Vukojevic V, Djurdjic S, Ognjanovic M, Fabian M, Samphao A, Kalcher K, et al. Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. Journal of Electroanalytical Chemistry. 2018;823: 610-616.
  16. Rodger BB, Andrew DE, Eugene WR. Standard Methods for the Examination of Water and Wastewater, 23rd, American Public Health Association, Washington, DC 20001-3710, 5220 Chemical Oxygen Demand (COD). 2017;586-591.
  17. Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science. 2017;52:1-61.
  18. Chianeh FN, Parsa JB. Degradation of azo dye from aqueous solutions using nano-SnO2/Ti electrode prepared by electrophoretic deposition method: Experimental Design. Chemical Engineering Research and Design. 2014;92:2740-2748.
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2022 Array