Tóm tắt
Hệ gốm áp điện Pb0,94Sr0,05La0,01(Zr0,54Ti0,46)0,9975O3 pha tạp Bi(Mn1/2Ti1/2)O3 được chế tạo thành công bằng công nghệ phản ứng pha rắn. Cấu trúc và vi cấu trúc của vật liệu được xác định bằng kỹ thuật phân tích XRD và hiển vi điển tử quét. Việc bổ sung Bi(Mn1/2Ti1/2)O3 vào Pb0,94Sr0,05La0,01(Zr0,54Ti0,46)0,9975O3 góp phần chuyển pha tứ giác sang pha mặt thoi; kích thước hạt trung bình giảm; hệ số phẩm chất cơ học Qm của vật liệu tăng. Gốm với thành phần 0,97 Pb0,94Sr0,05La0,01(Zr0,54Ti0,46)0,9975O3 – 0,03 Bi(Mn1/2Ti1/2)O3 có các đặc tính của gốm áp điện cứng với hệ số liên kết điện cơ kp = 0,59; kt = 0,48; hằng số áp điện d33 = 446 pC/N; hệ số phẩm chất cơ học Qm = 774 và nhiệt độ chuyển pha Tm = 265 °C. Vật liệu này có các thông số tương đương với các vật liệu thương mại như PZT4 và PZT8. Loại gốm cứng này có tiềm năng sử dụng trong các thiết bị siêu âm công suất.
Tài liệu tham khảo
- Quang DA, Vuong LD. Enhanced piezoelectric properties of Fe2O3 and Li2CO3 co-doped Pb[(Zr0.48Ti0.52)0.8(Zn1/3Nb2/3)0.125(Mn1/3Nb2/3)0.075]O3 ceramics for ultrasound transducer applications. Journal of Science: Advanced Materials and Devices. 2022;7(2):100436.
- Liu W, Cao Y, Wang J, Wang Y, Xi X, Yang J. Piezoelectric properties of 3-1 type porous PMN-PZT ceramics doped with strodium. Materials Science and Engineering: B. 2021;263:114847.
- Brzezińska D, Skulski R, Niemiec P, Dercz G. The properties of (1–x)(0.5PZT-0.5PFW)-xPFN ceramics doped by Li. Journal of Alloys and Compounds. 2021;851:156828.
- Babu GA, Gowthami S, Varadarajan E, Rawal B, Praveenkumar B. Enhanced piezoelectric properties in Sm-doped 24Pb(In0.5Nb0.5)O3–42Pb(Mg0.335Nb0.665)O3–34PbTiO3 piezoceramics. Journal of Materials Science: Materials in Electronics. 2021;32(3):3264-72.
- Guo Q, Meng X, Li F, Xia F, Wang P, Gao X, et al. Temperature-insensitive PMN-PZ-PT ferroelectric ceramics for actuator applications. Acta Materialia. 2021;211:116871.
- Park H-Y, Nam C-H, Seo I-T, Choi J-H, Nahm S, Lee H-G, et al. Effect of MnO2 on the Piezoelectric Properties of the 0.75Pb(Zr0.47Ti0.53)O3–0.25Pb(Zn1/3Nb2/3)O3 Ceramics. Journal of the American Ceramic Society. 2010;93(9):2537-40.
- Wu Q-c, Hao M-m, Zeng Z-q, Wang X-c, Lv W-z, Fan G-f. Nonlinear dielectric effect of Fe2O3-doped PMS–PZT piezoelectric ceramics for high-power applications. Ceramics International. 2017;43(14):10866-72.
- He L-X, Gao M, Li C-E, Zhu W-M, Yan H-X. Effects of Cr2O3 addition on the piezoelectric properties and microstructure of PbZrxTiy(Mg1/3Nb2/3)1−x−yO3 ceramics. Journal of the European Ceramic Society. 2001;21(6):703-9.
- Yoo S-Y, Ha J-Y, Yoon S-J, Choi J-W. High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators. Journal of the European Ceramic Society. 2013;33(10):1769-78.
- Rema KP, Kumar V. Structure–Property Relationship in Mn-Doped (Pb0.94Sr0.06)(Zr0.53Ti0.47)O3. Journal of the American Ceramic Society. 2008;91(1):164-8.
- Li S, Fu J, Zuo R. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors. Ceramics International. 2021;47(14):20117-25.
- Kalem V, Timucin M. Structural, piezoelectric and dielectric properties of PSLZT–PMnN ceramics. Journal of the European Ceramic Society. 2013;33(1):105-11.
- Brajesh K, Himanshu AK, Sharma H, Kumari K, Ranjan R, Bandhopadhyay SK, et al. Structural, dielectric relaxation and piezoelectric characterization of Sr2+ substituted modified PMS-PZT ceramic. Physica B: Condensed Matter. 2012;407(4):635-41.
- Yu Y, Yang J, Wu J, Bian L, Li X, Chen W, et al. Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification. Ceramics International. 2020;46(11, Part B):19103-10.
- Du G, Liang R, Wang L, Li K, Zhang W, Wang G, et al. Internal bias field relaxation in poled Mn-doped Pb(Mn1/3Sb2/3)O3–Pb(Zr, Ti)O3 ceramics. 2013;39(7):7703-8.
- Zhang B, Qi H, Zuo R. A new low-temperature firable 0.95Pb(ZrxTi1–x )O3 -0.05Bi(Mn1/2Ti1/2)O3 ceramic for high-power applications. Ceramics International. 2017;44.
- Huang T, Fu J, Zuo R. A Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3–Bi(Mn2/3Sb1/3)O3 quaternary solid solution ceramic with low sintering temperature, high piezoelectric coefficient and large mechanical quality factor. Journal of Materials Science: Materials in Electronics. 2019;30(10):9540-6.
- Fan G, Zeng Z, Jin S, Wu Q, Lv W, Wang X. High field dielectric property and piezoelectric response in PMS-PZT piezoelectric ceramics modified with BiFeO3. Ferroelectrics. 2017;520(1):126-34.
- Chen J, Xu Z, Yao X. Effect of bismuth doping on dielectric, piezoelectric and ferroelectric properties of PZT ceramics. Materials Research Innovations. 2010;14:234-7.
- Kalem V, çam I, Timuçin M. Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceramics International. 2011;37:1265-75.
- Kim S-W, Lee H-C. Development of PZN-PMN-PZT Piezoelectric Ceramics with High d33 and Qm Values. Materials. 2022;15(20).
- Ullah A, Ahn CW, Hussain A, Kim IW. The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol–gel technique. Current Applied Physics. 2010;10(6):1367-71.
- Peng J, Zeng J, Li G, Zheng L, Ruan X, Huang X, et al. Softening-hardening transition of electrical properties for Fe3+-doped (Pb0.94Sr0.05La0.01)(Zr0.53Ti0.47)O3 piezoelectric ceramics. Ceramics International. 2017;43(16):13233-9.
- Maurya D, Yan Y, Priya SJ. Piezoelectric Materials for Energy Harvesting; 2015. p. 143-78.

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International . p>
Bản quyền (c) 2025 Array