Tóm tắt
Nghiên cứu này trình bày quá trình tổng hợp vật liệu khung hữu cơ – kim loại MIL (Materials Institute Lavoisier) bằng phương pháp thủy nhiệt. Vật liệu được đặc trưng bằng phương pháp nhiễu xạ tia X và hiển vi điện tử quét. Kết quả cho thấy MIL-101 hình thành ở giai đoạn tổng hợp sớm (8 giờ). Sau đó xảy ra quá trình chuyển pha của vật liệu khi thời gian thủy nhiệt kéo dài lên 48 giờ. Hình thái bát diện của MIL-101 chuyển thành hình dạng hình que khi thời gian thuỷ nhiệt tăng lên. Điện cực được biến tính với MIL-101 có tính chất điện hóa đối với paracetamol tốt hơn so với các điện cực khác trong kỹ thuật volt-ampere vòng. Kỹ thuật volt-ampere xung vi phân cho thấy mối tương quan tốt giữa cường độ dòng đỉnh và nồng độ paracetamol trong khoảng nồng độ 0,50–6,95 µM với giới hạn phát hiện là 0,68 µM.
Tài liệu tham khảo
- Fan Y, Liu J-H, Lu H-T, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. Colloids Surf B Biointerfaces. 2011;85(2):289-92.
- Dalmázio I, Alves TMA, Augusti R. An appraisal on the degradation of paracetamol by TiO2/UV system in aqueous medium: product identification by gas chromatography-mass spectrometry (GC-MS). Journal of the Brazilian Chemical Society. 2008;19.
- Cunha RR, Chaves SC, Ribeiro MMAC, Torres LMFC, Muñoz RAA, Dos Santos WTP, et al. Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection. J Sep Sci. 2015;38(10):1657-62.
- Vilchez JL, Blanc R, Avidad R, Navalón A. Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids. J Pharm Biomed Anal. 1995;13(9):1119-25.
- Medany SS, Hefnawy MA, Fadlallah SA, El-Sherif RM. Zinc oxide–chitosan matrix for efficient electrochemical sensing of acetaminophen. Chem Pap. 2024;78(5):3049-61.
- Cardoso AG, Viltres H, Ortega GA, Phung V, Grewal R, Mozaffari H, et al. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. TrAC Trends Anal Chem. 2023;160:116965.
- Guth U, Vonau W, Zosel J. Recent developments in electrochemical sensor application and technology — a review. Meas Sci Technol. 2009;20(4):42002.
- Li S, Dong K, Cai M, Li X, Chen X. A plasmonic S-scheme Au/MIL-101(Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr(VI) and norfloxacin antibiotic. eScience. 2024;4(2):100208.
- Ren X, Wang C-C, Li Y, Wang P, Gao S. Defective SO3H-MIL-101(Cr) for capturing different cationic metal ions: Performances and mechanisms. J Hazard Mater. 2023;445:130552.
- Zhao T, Jeremias F, Boldog I, Nguyen B, Henninger SK, Janiak C. High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). Dalt Trans. 2015;44(38):16791-801.
- Wickenheisser M, Janiak C. Hierarchical embedding of micro-mesoporous MIL-101(Cr) in macroporous poly(2-hydroxyethyl methacrylate) high internal phase emulsions with monolithic shape for vapor adsorption applications. Microporous Mesoporous Mater. 2015;204:242-50.
- Cui L, Zhu B, Huang K, Gan Y, Li Y, Long J. Synthese, structure of three Zn-MOFs and potential sensor material for tetracycline antibiotic in water: {[Zn(bdc)(4,4′-bidpe)]·H2O}n. J Solid State Chem. 2020;290:121526.
- Salman F, Kazıcı HÇ, Gülcan M. Comparative of MIL101(Cr) and nano-MIL101(Cr) Electrode as an Electrochemical Hydrogen Peroxide Sensor. Electroanalysis [Internet]. 2022;34(10):1598-609.
- Zhang W, Zhang Z, Li Y, Chen J, Li X, Zhang Y, et al. Novel nanostructured MIL-101(Cr)/XC-72 modified electrode sensor: A highly sensitive and selective determination of chloramphenicol. Sensors Actuators B Chem. 2017;247:756-64.
- Li Q, Qu K. Electrochemical Impedimetric Platform Based on Con A@MIL-101 for Glycoprotein Detection. Langmuir. 2024;40(15):7974-81.
- Pan Y, Yuan B, Li Y, He D. Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chem Commun. 2010;46(13):2280-2.
- Kayal S, Sun B, Chakraborty A. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy. 2015;91:772-81.
- Sochr J, Cinkova, Svorc. Electrochemical Behaviour Study and Sensitive Determination of Dopamine on Cathodically Pretreated Boron-doped Diamond Electrode. Austin J Anal Pharm Chem Austin J Anal Pharm Chem. 2014;1(1):1004-1.
- Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab Jafari M, Gharamaleki JV, Yadollahi M, et al. A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater Sci Eng C Mater Biol Appl. 2016;61:638-50.
- Bard AJ, Faulkner LR. Fundamentals and applications: electrochemical methods. 2nd ed. New York: John Wiley & Sons, Ltd; 2001.
- Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem. 1979;101(1):19-28.
- Keyvanfard M, Shakeri R, Karimi-Maleh H, Alizad K. Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan. Mater Sci Eng C. 2013;33(2):811-6.
- Phong NH, Toan TTT, Tinh MX, Tuyen TN, Mau TX, Khieu DQ. Simultaneous Voltammetric Determination of Ascorbic Acid, Paracetamol, and Caffeine Using Electrochemically Reduced Graphene-Oxide-Modified Electrode. Valcarcel JI, editor. J Nanomater. 2018;2018:5348016.
- Duarte EH, Kubota LT, Tarley CRT. Carbon Nanotube Based Sensor for Simultaneous Determination of Acetaminophen and Ascorbic Acid Exploiting Multiple Response Optimization and Measures in the Presence of Surfactant. Electroanalysis. 2012; 24(12):2291-301.
- Alothman ZA, Bukhari N, Wabaidur SM, Haider S. Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode. Sensors Actuators B Chem. 2010;146(1):314-20.
- Fu L, Wang A, Lai G, Lin C-T, Yu J, Yu A, et al. A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. Mikrochim Acta. 2018; 185(2):87.

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International . p>
Bản quyền (c) 2024 Array