
 

Hue University Journal of Science: Techniques and Technology 
ISSN 2588–1175 | eISSN2615-9732 

Vol. 128, No. 2B, 2019, 5–16; DOI: 10.26459/hueuni-jtt.v128i2B.5104  

 

* Corresponding: ttluong@hueuni.edu.vn 

Received: 14–01–2019; Reviewed: 16–02–2019; Accepted: 25–02–2019 

 

JAVASCRIPT ASYNCHRONOUS PROGRAMMING 

Tran Thanh Luong1*, Le My Canh2 

1 Office for Undergraduate Education, University of Sciences, Hue University 
2 Department of Information Technology, University of Sciences, Hue University 

Abstract. JavaScript has become more and more popular in recent years because its rich 

feature set as being dynamic, interpreted and object-oriented with first-class functions. 

Furthermore, JavaScript is designed with event-driven and I/O non-blocking model that 

boosts the performance of overall application especially in the case of Node.js. To take 

advantage of these characteristics, many design patterns that implement asynchronous 

programming for JavaScript were proposed. However, choosing a right pattern and 

implementing a good asynchronous source code is a challenge and thus easily lead into 

robustless application and low quality source code. Extended from our previous works on 

exception handling code smells in JavaScript, this research aims at studying the impact of 

three JavaScript asynchronous programming patterns on quality of source code and 

application. 

Keywords: Keyword: javascript; asynchronous programming; code smell; error handling. 

1 Asynchronous error handling by callbacks 

1.1 The error-first callback pattern 

The very first JavaScript asynchronous error handling pattern is the “error-first callback” pattern, 

which was introduced in Node.js. This is a standard for callback throughout Node.js. Almost all 

of I/O operations are supported asynchronous programming by using this pattern. To define an 

error-first callback, there are two rules to be followed [1]: 

• The first parameter of the callback is reversed for an error object. If the requested 

asynchronous operation was failed, it would provide an error object as the first argument 

of the callback. 

• The successful response data is the second parameter of the callback. If the requested 

asynchronous operation did not encounter any error, the first argument will be set to null 

and the second argument will be the result of the operation. 

fs.readFile(filePath, function(err, data) { 
    if(err) { throw err; } 
    data = JSON.parse(data); 
}); 



Tran Thanh Luong and Le My Canh Vol. 128, No. 2B, 2019 

 

6 

When the listing code above is executed, the V8-engine (the engine to run JavaScript in 

Node.js) will start a worker thread for file reading asynchronously. If the reading process failed, 

the callback function will be invoked with the err parameter is not null. This parameter now 

contains the error of the file reading process. In the opposite case, err will be set to null and the 

data contains the content of the requested file. 

1.2 Callback advantages 

Using the error-first callback pattern may bring us some benefits: 

• Easily getting notified if an error occurs by checking the first parameter. 

• Consistently using the pattern to improve the readability of source code. 

As it has been shown in the listing code of previous section, by checking if the first 

argument is null, we can easily determine whether the asynchronous operation was successfully 

returned or not. Since most JavaScript programmers already familiar with using callback, this 

pattern helps them conform easily to Node.js asynchronous programming. It is also clear that, 

consistently using this pattern throughout the project will significantly improve the readability 

of source code. Nevertheless, this is the very first asynchronous error handling so it has many 

disadvantages that will be analyzed in next section. 

1.3 The downsides of using callbacks 

Although using this pattern is quite easily, in some cases many nested or complex asynchronous 

operations may be required, and the source code may run into callback hell [2], or become very 

complex causing hard to read, debug and maintain.  

fs.readFile("./f_path.txt", "utf8", function(err, data) { 

    if(err) { throw err; } 

    fs.readFile(data, "utf8", function(err, data) { 

        if(err) { throw err; } 

        console.log(data); 

    }); 

}); 

With this code listing, we can see that an asynchronous operation is calling in a callback, 

and we need to submit a callback to this operation, resulting in a nested-callback. In some other 

cases, this happens with multi-level nested callbacks, which is callback hell. Although we can 

define an outer function for the inner asynchronous file reading, and then call this function inside 

that outer callback, in the case of multi-level callbacks, doing so will lead to less readable source 

code, and cause more troubles in debugging. 



jos.hueuni.edu.vn                                                                                                                    Vol. 128, No. 2B, 2018 

 

7 

2 Asynchronous programming and error handling using promise 

2.1 JavaScript asynchronous programming with promise and corresponding error handling 

mechanism 

In recent years, prior to the ECMAScript officially supports promise, many developers have 

already used some open source libraries that supported promise like q [3] or promisejs [4]. 

Beginning from ECMAScript 6, JavaScript has already had built-in promise [5], therefore, more 

and more developers tend to use promise as a better strategy to implement asynchronous 

programming instead of callback. 

A promise as three states: 

• Pending: the asynchronous operation is not completed yet. 

• Fulfilled: the asynchronous operation complete successfully. 

• Rejected: the asynchronous operation may encountered error and failed, or was rejected 

explicitly. 

To create a promise, the promise constructor accepts a function which has the 

following form: 

new Promise( /* executor */ function(resolve, reject) { ... } ); 

The two parameters resolve and reject are functions that have one parameter. In executor 

function, to indicate that the asynchronous operation has completed successful, we invoke the 

resolve function with argument is the result of the operation. In the other case, if there is any error 

which has occurred or the operation cannot compete successfully, we call the reject function with 

the argument as the error. We can chain promises by using function then. This function has two 

parameters which are the callbacks that corresponding to the cases of successful return or failure 

of asynchronous operation. These functions are also single-parameter functions. onFulfilled 

function will be called when the parameter is the data that returned. In case of failure, onRejected 

will be invoked with the parameter set to the error of asynchronous operation. 

p.then(onFulfilled[, onRejected]); 

2.2 Benefits of using promise 

The advantages of using promises include: 

• Eliminating callback hell, 

• Improving readability of source code, and 

• Being easier for debugging. 



Tran Thanh Luong and Le My Canh Vol. 128, No. 2B, 2019 

 

8 

The previous file reading example can be rewritten by using promise as bellow: 

function readFilePath() { 

    return new Promise(function (resolve, reject) { 

        fs.readFile("./f_path.txt", "utf8", function (err, data) { 

            if (err) reject(err); 

            resolve(data); 

        }) 

    }); 

} 

function readFileContent(filePath) { 

    return new Promise(function (resolve, reject) { 

        fs.readFile(filePath, "utf8", function (err, data) { 

            if (err)  reject(err);  

            resolve(data); 

        }); 

    }); 

} 

readFilePath() 

    .then(readFileContent) 

    .then(function(data) { 

        console.log(data) 

    }, function (err) { 

        console.log("An error has occurred!") 

    }); 

As it is clearly shown above, we already eliminated all nested callbacks by using 

independent functions and then chained all promises by then. If we have many sequential 

asynchronous operations, simply put them into sequential thens. Because all of thens are at the 

same level, the source code now is similar to synchronous code, thus increase the readability, 

maintainability significantly. 

Error handling with promise now is easier, likely using try catch in synchronous 

programming because all the asynchronous operation now are at the same source code level by 

then. With every then, developer can provide corresponding onReject callback for error handling. 

If an error occurred and this onReject callback is absent, then function will return a promise with 

Rejected state. Developer can add a onRjected callback at the end of the then chain for error 

handling for all over the chain. 

2.3 Missing global promise rejection to handle code smell 

Identification 

Although using promise makes error to be handled more easily, some error handling code smells 

may still happen with even experienced developer. Beside the two errors handling code smells 

we analyzed in [6]: “Error swallowing in onRejected handler” and “Missing error handling at the end 

of promise chain”, in this paper we study a new error handling code smell: “Missing global rejected 

promise to handle code smell”.  



jos.hueuni.edu.vn                                                                                                                    Vol. 128, No. 2B, 2018 

 

9 

At the server side - Node.js, application runs on a single process by default. This process 

will be terminated on any uncaught exception or unhandled promise rejection (UEUJ for short). 

This is troublesome because we almost run Node.js application as a web server. Certainly, 

application will always have exceptions and has a high probability, some of them could become 

an UEUJ. In addition, any UEUJ will bring down the whole application. After that, the application 

cannot serve any further incoming requests. Again, this can be seen as having poor software 

quality.  The same can be said about the client side. As analyzed in [7], related to uncaught 

exception, we already identified the exception handling code smell called No Global Uncaught 

Exception Handler.  In case of promise, Missing Global Promise Rejection Handling is a similar 

exception handling code smell. 

Refactoring 

Implement Global Unhandled Promise Rejection Handling. Two strategies are proposed identical to 

the server side (in Node.js) and the client side.  

a. For server-side Node.js application 

Any unhandled promise rejection will lead to identical uncaught result exception: take 

down the server. Implement a global unhandled promise rejection to make log, notify the 

administrator and restart the server.  

From Node.js v1.4.1, developers can implement a listener for unhandledRejection event of 

process, as demonstrated in the following example. The first argument of the handler is the 

rejection reason (the rejection value from the promise, usually an error object), and the second 

one is the promise that was rejected. 

process.on(unhandledRejection, function(err, promise) { 
  /* log the err and notify administrator */ 
  /* Code to restart the process */ 
}); 

b. For client-side JavasScript application 

An unhandled promise rejection from a JavaScript program may lead client-side web 

application to unexpected behaviors. Implement a global error handler to catch all unhandled 

promise rejections, log them on the server for developers to debug and possibly reload the 

application [7]. 

window.addEventListener('unhandledrejection', function (event) { 
  //log error to server and may reload web application 
}); //OR 
window.onunhandledrejection = function (event) { 
  //log error to server and may reload web application 
});  



Tran Thanh Luong and Le My Canh Vol. 128, No. 2B, 2019 

 

10 

Different from Node.js implementation that passes the rejection reason and the rejected 

promise to the event handler individually, the event handler for browsers will receive a single 

event object that has the following properties: 

• type is the name of the event (unhandledrejection or rejectionhandled, we do not 

consider the rejectionhandled in this paper but at a glance, this event will be fired when a 

promise is rejected and a rejection handler is called after one turn of the event loop). 

• promise is the promise object that was rejected. 

• reason is the rejection value from the promise. 

However, the code above only runs on limited number of browsers: Google Chrome and 

Microsoft Edge. This is because the unhandledrejection event up to now is still in draft version of 

ECMAScript 9 [8]. Nevertheless, implementing these event handler in JavaScript still is a worth 

consideration. 

Motivation 

a. For server-side Node.js application 

When an unhandled promise rejection occurs, it is not recommended to keep the process 

running. unhandledRejection is an event triggered away from the original source of the 

exception. All you get at this point is the rejection value and the rejected promise. Most likely no 

reference is available for returning to the context when the promise is rejected to clean up the 

application state or other resources [7]. As a result, it is best to exit the undergoing process and 

fork a new one. This would keep the server from going crashing and unexpected behaviors. 

Logging the rejection reason will help developers for debugging application and the source code 

now achieve robustness level G1 [9]. 

b. For client-side JavaScript application 

A message of unhandled rejection is logged to browser’s console window. However, it is 

at the user’s browser. Developer will not be notified about that failure. A JavaScript application 

with no global error handler fails to achieve G1 since error information loses. Consequently, a 

global unhandled promise rejection to deal with unhandled rejection is necessary for error 

reporting. Since unhandled rejection event is triggered away from the context where the promise 

is rejected, we cannot process the rejected promise but report it to developers, may reload the 

application (automatically or manually by giving a recommendation to users). 



jos.hueuni.edu.vn                                                                                                                    Vol. 128, No. 2B, 2018 

 

11 

3 Asynchronous error handling with async function 

3.1 The new async/await keyword 

Promise is a new method to write JavaScript asynchronous code in a sequential manner. Since 

ECMAScript 8, async function has been introduced [10] and this allows us to write asynchronous 

code even more synchronous-looking and corresponding to it is the new async/await keywords. 

This feature is actually built on top of promise.  

To create an async function, we simply put the async keyword before the function 

definition [11]. 

async function asynfunc() { 
  return “Hello Async function”; 
} 

The asyncfunc function now becomes an async function that always returns a promise. In 

case, the function returns a non-promise value, JavaScript will automatically wrap this value into 

a resolved promise. Therefore, the above example can be rewritten as the following listing code. 

async function asynfunc() { 
  return Promise.resolve(“Hello Async function”); 
} 

Since the async function always returns a promise, you can use this return value as a 

promise as usual: 

asynfunc().then(console.log); 

ECMAScript 8 also introduced the new keyword await. This keyword is only valid inside 

async function. Putting await keyword before a promise inside an async function, it will make 

the async function to return immediately (actually the function will return a promise as said 

above), thus JavaScript runtime can continue at the next statement right after the call of async 

function. 

async function asyncfunc() { 
    var promise_inside = new Promise((resolve, reject) => { 
        setTimeout(() => resolve("done!"), 1000); 
    }); 
    var result = await promise_inside; 
    console.log(result); // "done!" 
    return "async function return"; 
} 
asyncfunc().then(console.log); 
console.log("outside async function"); 
 
/* OUTPUT 
outside async function 
done! 
async function return */ 



Tran Thanh Luong and Le My Canh Vol. 128, No. 2B, 2019 

 

12 

3.2 Improved asynchronous programming and error handling experience 

The most important benefits of async/await feature can be listing bellow: 

• Substantially increase readability, maintainability of asynchronous source code. 

• Significantly simplify the error handling of asynchronous code. 

Asynchronous error handling in a synchronous manner 

As described in Section 2.1, we need to register an onRejected listener to catch any error that 

happens inside the promise or to handle when the promise is rejected. In addition, we cannot use 

the try/catch construction to catch these errors if the try/catch is out of promise [12]. With 

async/await feature, we can use try/catch construction to handle both synchronous and 

asynchronous handily. This is meaningful for developer since the source codes for error handling 

is completely synchronous while the task behind is asynchronous.  

async function asyncfunc() { 
    try { 
        var promise = new Promise((resolve, reject) => { 
            setTimeout(() => resolve("done!"), 1000); 
            throw new Error("Error inside promise!"); //or reject(new Error("…")); 
        }); 
        await promise.then(console.log); 
    } catch (err) { 
        console.log("Error caught " + err); 
    } 
} 
 
asyncfunc(); 
//OUTPUT: 
//Error caught Error: Error inside promise! 

Finally, for debugging purpose, async/await with try/catch allow us to go step by step over 

the source code. From the above example, if we set a breakpoint inside any line inside the try 

block, when the breakpoint is hit, we can go step by step and can reach the statement inside the 

catch block. This is completely identical to the debugging process when we debug the 

synchronous source code. This is impossible for the promise version with onRejected event as 

listed below, we cannot reach the catch block by following step by step. 

function asyncfunc() { 
    var promise = new Promise((resolve, reject) => { 
        setTimeout(() => resolve("done!"), 1000); 
        throw new Error("Error inside promise!"); //or reject(new Error("…")); 
    }); 
    promise.then(console.log, function (err) { 
        console.log("Error final " + err); //not reachable in step by step debugging 
    }); 
} 
 
asyncfunc(); 

 



jos.hueuni.edu.vn                                                                                                                    Vol. 128, No. 2B, 2018 

 

13 

Neat asynchronous source code 

Async/await feature makes the source code much cleaner, neater and increases readability 

significantly especially when it deals with multiple sequential asynchronous tasks. Moreover, 

asynchronous source code with async/await is completely synchronous-looking thus can also 

improve readability. 

In the bellow example, we simulate a CPU time consuming task by creating a function that 

adds 10 to its input after 1 second. We need to do this task 4 times sequentially to sum 4 numbers 

with 10, and finally calculate the sum of these 4 results. In additional, for each step we need to 

add the step number to the return value of previous step before continue adding 10. The 

implemented source code is quite complicated, less readable. Besides this, callback hell appears 

with promise, but this is not always happen since in this example, we need to use closure for 

accessing the results of 4 steps at last. 

function addTenAfterTenSecond(a) { 
    return new Promise(function(resolve, reject) { 
        if(a > 100) throw (new Error("input value must not be greater than 100")); 
        setTimeout(() => resolve(a + 10), 1000); 
    }); 
} 
function addFourSteps(input) { 
    return addTenAfterTenSecond(input).then(a => addTenAfterTenSecond(a + 1) 
            .then(b => addTenAfterTenSecond(b + 1).then(c => addTenAfterTenSecond(c + 1) 
                    .then(d => a + b + c + d)))); 
} 
 
addFourSteps(50) 
    .then(console.log) // 306 
    .catch(console.log); 

Using async/await features, the code now becomes synchronous-looking and much clearer. 

Furthermore, this version allows you for step by step debugging that is impossible with the 

previous one. 

async function addTenAfterTenSecond(a) { 
    return new Promise(function(resolve, reject) { 
        if(a > 100) throw (new Error("input value must not be greater than 100")); 
        setTimeout(() => resolve(a + 10), 1000); 
    }); 
} 
async function addFourSteps(input) { 
    var a = await addTenAfterTenSecond(input); var b = await addTenAfterTenSecond(a + 1); 
    var c = await addTenAfterTenSecond(b + 1); var d = await addTenAfterTenSecond(c + 1); 
    return a + b + c + d; 
} 
addFourSteps(50) 
    .then(console.log) // 306 
    .catch(console.log); 



Tran Thanh Luong and Le My Canh Vol. 128, No. 2B, 2019 

 

14 

3.3 The async/await hell code smell 

Using async/await completely eliminates callback hell and allows us to write synchronous-

looking code for asynchronous tasks. However, careless using this feature may lead into another 

code smell: async/await hell. 

Identification 

When using async/await, 2 statements have been await before function calls, however they are 

responsible for 2 tasks that does not depend on each other. However,  in this case, the later 

statement still needs to wait the previous one to complete thus lead into longer total execution 

time. 

async function initBlog() { 

    var categoriesData = await getCategoriesData(); 

    var postsData = await getPostsData(); 

    settingUpUI(categoriesData, postsData); 

} 

initBlog(); 

The JavaScript snippet above will load the data of a blog from database then show up the 

application UI when all data are available. Supposing accessing database for reading categories 

and posting information are time consuming tasks. Moreover, reading data for posts does not 

depend on reading data for categories. Although the code above works but it will take more time 

since we need to wait for retrieval category information to finish then start reading data for post. 

In fact, we can execute these tasks concurrently.  

Another example for async/await hell is shown below. We loop through all categories and 

get all posts belong to each. Although getting posts of each category can execute concurrently, 

this source code still runs one after another sequentially. 

for (var i = 0, len = categoriesData.length; i < len; i++) { 
    await getPostsOfCategory(categoriesData[i].id); 
} 

Refactoring.  

You have a async/await hell, apply the following strategies to remove the code smell: 

• Group dependent statements in async functions then execute those concurrently. 

• Start the function call without await and then await the returned promise. 

• Use Promise.all. 

In case of the initBlog example, we can separate the call of async function and the await 

statement. When we call the async function without await keyword, the function start execute 



jos.hueuni.edu.vn                                                                                                                    Vol. 128, No. 2B, 2018 

 

15 

and return a promise. However, after start 2 reading data functions, what all we have now is the 

two corresponding promises. Before showing up the UI, we must wait for those promises to 

finish. await 2 promise now will not make the reading tasks wait for each other since they already 

started.  

async function initBlog() { 
    var categoriesData = getCategoriesData(); 
    var postsData = getPostsData(); 
    await categoriesData; 
    await postsData; 
    settingUpUI(categoriesData, postsData); 
} 
initBlog(); 

Another solution to this scenario is Promise.all. 

Promise.all(getCategoriesData(), getPostsData()) 
    .then(blogData => settingUpUI(blogData[0], blogData[1]));  
// blogData[0]: resolved value of getCategoriesData 
// blogData[1]: resolved value of getPostsData 

To the case of for loop example, we first start the call without await keyword, then push 

all promise into an array, finally use Promise.all to wait for all to finish. 

var promises = []; 
for (var i = 0, len = categoriesData.length; i < len; i++) { 
    var p = getPostsOfCategory(categoriesData[i].id); 
    promises.push(p); 
} 
await Promise.all(promises); 

Motivation 

Async/await hell makes independent tasks to run consequently, decrease performance of 

application thus this can be considered as a poor quality software. Applying proposed refactoring 

method will eliminate this code smell, allowing independent tasks to run concurrently, improve 

speed of the software and increase the final quality of product. 

4 Conclusion 

In this paper, we analyzed three methods for asynchronous programming in JavaScript: using 

callback, promise and async/await feature. Using promise will eliminate callback hell that 

happens in case of using callback. It also increases the readability and maintainability of the 

source code. We also identified one error handling code smell: Missing Global Promise Rejection 

Handling code smell. This code smell make application fail to achieve robustness level G1 and 

leave no clue for debugging. ECMAScript 8 introduced async/await feature. Using this helps 

developer write synchronous-looking code while execute asynchronous code behind the scene. 

Async/await also allows us to step by step debug the application while promise cannot. 



Tran Thanh Luong and Le My Canh Vol. 128, No. 2B, 2019 

 

16 

Moreover, A code smell related to async/await is also identified namely async/await hell. 

Corresponding refactoring method also is proposed to remove the code smell. 

Our study also can apply for C# language with async/await feature, Java with 

CompletableFuture. For future work, we planned to research more about error handling and 

error handling code smell with async/await feature. 

References 

1. Fred K. S., “The Node.js Way - Understanding Error-First Callbacks”, Available: 

http://fredkschott.com/post/2014/03/understanding-error-first-callbacks-in-node-js/, date accessed: 

16/11/2018. 

2. C. Hell, “Callback Hell”, Available: http://callbackhell.com/, date accessed: 16/11/2018. 

3. Kris K., “A Promise Library for JavaScript”, Available: https://github.com/ kriskowal/q, date accessed: 

22/11/2018. 

4. Forbes L., “Promises”, Available: https://www.promisejs.org/, date accessed: 22/11/2018. 

5. ECMA International, “Standard ECMA-262, 6th Edition/June 2015, ECMAScript 2015 Language 

Specification”, 2015. 

6. L. M. Canh and T. T. Luong, “Exception handling in Javascript asynchronous programming with 

Promise”, Journal of Science and Technology, 2017.  

7. C.-Y. Hsieh, L. M. Canh, H. Kim Thoa and Y. C. Cheng, “Identifcation and Refactoring of Exception 

Handling Code Smells”, Journal of Internet Technology, Vol. 18, No. 6, pp. 1461– 1471, 2018. 

8. ECMA International, “Standard ECMA-262, 9th Edition/June 2018, ECMAScript 2018 Language 

Specification”, 2018. 

9. C.-T. Chen, Y. C. Cheng, C.-Y. Hsieh and I.-L. Wu, “Exception Handling Refactorings: Directed By Goals 

and Driven By Bug Fixing”, The Journal of Systems and Software, Vol. 82, No. 2, pp. 333–345, 2009. 

10. ECMA International, “Standard ECMA-262, 8th Edition/June 2017, ECMAScript 2017 Language 

Specification”, 2017. 

11. Ilya K., “Promises, Async/Await”, Available: https://javascript.info/async-await, date accessed: 

22/11/2018. 

12. Mozilla, “Concurrency Model and Event Loop”, Available: https://developer.mozilla. org/en-

US/docs/Web/JavaScript/EventLoop, date accessed: 18/11/2018. 


