Một số kết quả về nhóm Lie và đại số Lie đơn exponent yếu

Authors

  • Trần Đạo Dõng Ban Khoa học Công nghệ - Đại học Huế
  • Dương Thị Đào

Abstract

In this paper, based on results of Kneeb K. H., we describe simple real Lie
algebras g for which there exist connected Lie groups with dense images of the exponential
function. We also describe the simple real Lie algebras for which the exponential functions
of the associated simply connected Lie groups have dense images. Case by case analysis
has led to the classification of weakly exponential simple Lie algebras. It is a result that
non-compact non-complex simple Lie algebras are completely weakly exponential or not.
Then we apply for weakly exponential semisimple Lie groups.

Author Biography

Trần Đạo Dõng, Ban Khoa học Công nghệ - Đại học Huế

Trưởng Ban KHCN ĐHH

References

D. Z. Đokovic, The interior and the exterior of the image of the exponential map in

classical Lie groups. Journal of Algebra 112, (1988), 90-109.

D. Z. Đokovic and K. H. Hofmann, The surjectivity question for the exponential function

of real Lie groups. Journal of Lie Theory 7, (1997), 171-199.

D. Z. Đokovic and Q. T. Nguyen, On the exponential map of almost simple real algebraic

groups. Journal of Lie Theory 5, (1996), 275-291.

D. Z. Đokovic and Q. T. Nguyen, Lie groups with dense exponential image. Mathematische

Zeitschrift 225, (1997), 35-47.

Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic

Press, London, 1978.

Hofmann K. H., A memo on the exponential function and regular points. Archiv der

Mathematik 59, (1992), 24-37.

Hofmann K. H. and Mukherjea A., On the density of the image of the exponential

funtion. Mathematische Annalen 234, (1978), 263-273.

Konstantinov A.L. and Rozanov P. K., On the exponential map of Lie groups locally

isomorphic to SU(p; q). Journal of Lie Theory 15, (2005), 51-61.

Neeb K. H., Weakly Exponential Lie Groups. Journal of Algebra 179, (1996), 331-361.

Wustner M., The classification of all simple Lie Groups with surjective exponential

map. Journal of Lie Theory 15, (2005), 269-278.

Published

2014-07-01