Schwinger-Dyson equations for fermions self-energy in the electroweak-scale right-handed neutrino model

Authors

  • Nguyễn Như Lê Trường Đại học Sư phạm
  • Phạm Quang Hưng Khoa Vật lý, Đại học Virginia

Abstract

The dynamical formation of condensates is studied in the framework of Schwinger-Dyson approach. Two types of condensates are considered here: that which is produced by the exchange of the fundamental Higgs doublet    between two mirror quarks and the other which is produced by the exchange of the fundamental Higgs triplet  between two right-handed neutrinos. The conditions for which fermion bilinear condensates can get formed were analytically found. Mirror quark and right-handed neutrino condensates can be determined through solutions of Schwinger-Dyson equations. Vacuum expectation values of the aforementioned fundamental Higgs are related to the condensate scale. In addition, the threshold for the new strong interactions is found with no fine-tuned requirement.  

References

K. Nakamura et al. [Particle Data Group Collaboration], J. Phys. G 37, 075021 (2010).

P. Minkowski, Phys. Lett. B 67 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, eds. P. van Niewenhuizen and D. Z. Freedman (North Holland 1979); T. Yanagida, in Proceeding of Workshop on Unifed Theory and Baryon Number in the Universe, eds. O. Sawada and A. Sugamoto (KEK 1979); S. L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargese Summer Institute on quarks and leptons (M. Levy, J. -L. Basdevant, D. Speiser, J. Speiser, R. Gatsmans, and M. Jacob, eds. Plenum Press, New York, 1980, p. 687; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980). For recent reviews, see V. Barger, D. Marfatia, and K. Whisnant, Int. J. Mod. Phys. E12, 569 (2003) [arXiv:hep-ph/0308123]; R. N. Mohapatra et al, [arXiv: 0510213 [hep-ph]]; G. Altarelli, [arXiv: 0611117[hep-ph]], and references therein.

P. Q. Hung, Phys. Lett. B 649, 275 (2007) [arXiv: 0612004 [hep-ph]].

V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 877, 190 (2013) [arXiv:1303.0428 [hep-ph]].

V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 896, 611 (2015) [arXiv:1412.0343 [hep-ph]].

P. Q. Hung, Phys. Lett. B 659, 585 (2008) [arXiv:0711.0733 [hep-ph]].

P. Q. Hung, Nucl. Phys. B 805, 326 (2008) [arXiv:0805.3486 [hep-ph]].

A. Aranda, J. Hernandez-Sanchez and P. Q. Hung, JHEP 0811, 092 (2008) [arXiv:0809.2791 [hep-ph]].

P. Q. Hung and T. Le, JHEP 1509, 001 (2015) [arXiv: 1501.02538 [hep-ph]].

P.Q. Hung, Trinh Le, Van Que Tran and Tzu-Chiang Yuan, JHEP 1512, 169 (2015) 169 [arXiv:1508.07016 [hep-ph]].

Shreyashi Chakdar, K. Ghosh, V. Hoang, P. Q. Hung and S. Nand, Phys. Rev. D 93, 035007 (2016) [arXiv:1508.07318 [hep-ph]].

The list of references related to these topics is extensive and it is impossible to put it in this note.

C.T. Hill, Phys. Lett. B 345, 483 (1995).

A. Smetana [arXiv:1301.1554 [hep-ph]].

B. Holdom, Phys. Rev. Lett. 57, 2496 (1986), Erratumibid. 58, 177 (1987); S.F. King, Phys. Lett. B 234, 108 (1990); P.Q. Hung and G. Isidori Phys. Lett. B 402, 122 (1997); B. Holdom, JHEP 0608, 76 (2006); Y. Mimura, W.S. Hou and H Kohyama [arXiv:1206.6063 [hep-ph]].

M.A. Luty, Phys. Rev. D 41, 2893 (1990).

C. Hill, M. Luty and E.A. Paschos, Phys. Rev. D 43, 3011 (1991).

G. Burdman and L. Da Rold, JHEP 0712, 86 (2007).

P.Q. Hung, C. Xiong, Nucl. Phys. B 848, 288 (2011).

G. Burdman, L. Da Rold, O. Eboli and R.D. Matheus, Phys. Rev. D 79, 075026 (2009); M. Hashimoto and V.A. Miransky, Phys. Rev. D 81, 055014 (2010); A.E.C. Hernandez, C.O. Dib, H.N. Neill and A.R. Zerwekh, JHEP 1202, 132 (2012); P.Q. Hung, C. Xiong, Nucl. Phys. B 847, 160 (2011); P.Q. Hung, C. Xiong, Phys. Lett. B 694, 430 (2011); C.M. Ho, P.Q. Hung and T.W. Kephart, JHEP 1206, 45 (2012). G. Burdman, L. De Lima and R.D. Matheus, Phys. Rev. D 83, 035012 (2011).

G. Burdman, C.E.F. Haluch, JHEP 1112, 038 (2011); B. Holdom [arXiv:1301.0329 [hep-ph]].

H. Georgi and M. Machacek, Nucl. Phys. B 262, 463 (1985); R. S. Chivukula and H. Georgi, Phys. Lett. B 182, 181 (1986); P. H. Frampton, M. C. Oh, and T. Yoshikawa, Phys. Rev. D 66, 033007 (2002) [arXiv: 0204273 [hep-ph]]. For a recent use of a Higgs triplet, see E. Ma and U. Sarkar, Phys. Lett. B 638, 356 (2006) [arXiv: 0602116 [hep-ph]].

C. N. Leung, S. T. Love and W. A. Bardeen, Nucl. Phys. B 273, 649 (1986); Phys. Rev. Lett. 56, 1230 (1986).

Michael S. Chanowitz and Mary K. Gaillard, Nucl. Phys. B 261, 379 (1985).

John M. Cornwall, David N. Levin, and George Tiktopoulos. Phys. Rev. D 10, 1145 (1974).

G. J. Gounaris, R. Kogerler, and H. Neufeld, Phys. Rev. D 34, 3257 (1986).

Published

2016-08-01

Issue

Section

Journal of Natural Sciences