Some results on Semisimple Symmetric Spaces and Invariant Differential Operators

Authors

  • Trần Đạo Dõng Trường Đại học Sư phạm-Đại học Huế

Abstract

Let X = G/H be a semisimple symmetric space of non-compact style. Our purpose is to construct a compact real analytic manifold in which the semisimple symmetric space X = G/H is realized as an open subset and that $G$ acts analytically on it. By the Cartan decomposition G = KAH, we must compacify the vectorial part A.$ In [6], by using the action of the Weyl group, we constructed a compact real analytic manifold in which the semisimple symmetric space G/H is realized as an open subset and that G acts analytically on it.Our construction is a motivation of the Oshima's construction and it is similar to those in N. Shimeno, J. Sekiguchi for semismple symmetric spaces.In this note, first we will inllustrate the construction via the case of SL (n, R)/SO_e (1, n-1) and then show that the system of invariant differential operators on X = G/H extends analytically on the corresponding compactification.

Author Biography

Trần Đạo Dõng, Trường Đại học Sư phạm-Đại học Huế

Trưởng Ban KHCN ĐHH

References

E. van den Ban and H. Schlichtkrull,{sl Harmonic analysic on

reductive symmetric spaces,} Proc. $3^{rd}$ European Congress of

Mathematics, 2000.

bibitem{bl1}

A. Borel and Lizhen Ji, {sl Compactifications of locally symmetric

spaces symmetric spaces,} Lectures for the European School of Group

Theory, Luminy, France, 2001.

bibitem{bl2}

A. Borel and Lizhen Ji, {sl Compactifications of symmetric spaces

I,} Lectures for the European School of Group Theory, Luminy,

France, 2001.

bibitem{cp}

C. De Concini and C. Procesi, {sl Complete symmetric varieties,}

Lecture Notes in Math.,1983.

bibitem{dv1}

Tran Dao Dong and Tran Vui, {sl A realization of Riemannian

symmetric spaces in compact manifolds}, Proc. of the ICAA 2002,

-196, Bangkok.

bibitem{dv2}

Tran Dao Dong and Tran Vui, {sl A Compact Imbedding of semi simple

symmetric spaces}, East West Journal, No. 01, 2004, 43-54.

bibitem{lj}

Lizhen Ji, {sl Introduction to symmetric spaces and their

compactifications,} Lectures for the European School of Group

Theory, Luminy, France, 2001.

bibitem{wk}

W.A. Kosters, {sl Eigenspaces of the Laplace-Beltrami operator on

$SL(n, {{mathrm I}!{mathrm R}})/S(G(1)times GL(n-1))$ }, Part I,

Proc. of Math., University of Leiden (1984).

bibitem{mo}

T. Matsuki and T. Oshima, {sl A description of discrete series for

semisimple symmetric Spaces,} Adv. Studies in Pure Math., 4(1984),

-390.

bibitem{os1}

T. Oshima, {sl A realization of Riemannian symmetric spaces,} J.

Math. Soc. Japan, vol 30 (1978), 117-132.

bibitem{os2}

T. Oshima, {sl A realization of semisimple symmetric spaces and

construction of boundry value maps,} Advanced Studies in Pure Math.,

vol 14 (1988), 603-650.

bibitem{ojs}

T. Oshima and J. Sekiguchi, {sl Eigenspaces of invvariant

differential operatorson an affine symmetric space,} Invent Math.,

vol 57 (1980), 1-81.

bibitem{sch}

H. Schlichtkrull, {sl Hyperfunctions and Harmonic Analysic on

Symmetric Spaces,} Birkh"auser, Boston, 1984.

bibitem{sch2}

H. Schlichtkrull, {sl Harmonic analysic on semisimple symmetric

spaces,} Lectures for the European School of Group Theory,

University of Twente, The Netherlands, 1992.

bibitem{sek}

J. Sekiguchi, {sl Eigenspaces of the Laplace-Beltrami operator on a

hyperboloid,} Nagoya Math. J., vol 79 (1980), 151-185.

Published

2016-08-01

Issue

Section

Journal of Natural Sciences