UPPER SEMICONTINUITY AND CLOSEDNESS OF THE SOLUTION SETS FOR STRONG AND WEAK VECTOR QUASIEQUILIBRIUM PROBLEMS
Abstract
In this paper we establish sufficient conditions for the solution mappingsof strong and weak vector quasiequilibrium problems to have the stability propertiessuch as upper semicontinuity and closedness. The results presented in the paper improveand extend the main results of Kimura-Yao in [7, 8] and Anh-Khanh in [1].References
Anh, L. Q., Khanh, P. Q.: Semicontinuity of the solution sets of parametric multi-
valued vector quasiequilibrium problems, J. Math. Anal. Appl. 294, (2004) 699-711.
Berge, C., Topological Spaces, Oliver and Boyd, London, 1963.
Bianchi, M., Pini, R., A note on stability for parametric equilibrium problems,
Oper. Res. Lett. Vol. 31,(2003) 445-450.
Bianchi, M., Pini, R., Sensitivity for parametric vector equilibria, Optimization.
Vol. 55, (2006) 221-230.
Khanh, P. Q., Luu, L. M., Upper semicontinuity of the solution set of parametric
multivalued vector quasivariational inequalities and applications, J. Glob. Optim.
Vol. 32, (2005) 551-568.
Khanh, P. Q., Luu, L. M., Lower and upper semicontinuity of the solution sets and
approximate solution sets to parametric multivalued quasivariational inequalities,
J. Optim. Theory Appl. Vol. 133, (2007) 329-339.
Kimura, K., Yao, J.C., Sensitivity analysis of solution mappings of parametric
vector quasiequilibrium problems, J. Glob. Optim. Vol. 41, (2008) 187-202.
Kimura, K., Yao, J.C., Sensitivity analysis of solution mappings of parametric
generalized quasi vector equilibrium problems, Taiwanese. J. Math, Vol. 9, (2008)
-2268.
Kimura, K., Yao, J.C., Semicontinuity of Solution Mappings of Parametric Gen-
eralized Vector Equilibrium Problems, J. Optim. Theory. Appl. Vol 138, (2008)
-443.
Lalitha , C. S., Bhatia, G., Stability of parametric quasivariational inequality of
the Minty type, J. Optim. Theory. Appl. Vol. 148, (2011) 281-300.
Li, S. J., Chen, G. Y., Teo, K. L., On the stability of generalized vector quasivari-
ational inequality problems, J. Optim. Theory. Appl. Vol. 113, (2002) 283-295.
Luc, D. T., Theory of Vector Optimization: Lecture Notes in Economics and Math-
ematical Systems, Springer-Verlag Berlin Heidelberg, 1989.