CLASSIFICATION OF GRADED BRAIDED CATEGORICAL GROUPS BY PSEUDO-FUNCTORS

Authors

  • Nguyễn Tiến Quang Hanoi National University of Education
  • Phạm Thị Cúc Hongduc University

Abstract

In this paper we use the Grothendieck's equivalence of contravariantpseudo-functors over a category and the cofibrations over this category to prove thatthere is an isomorphism between the category of

References

A. M. Cegarra, A. R. Garzon and J. A. Ortega, Graded extensions of monoidal

categories, J. Algebra 241 (2) (2001), 620{657.

A. M. Cegarra, J. M. Garca - Calcines and J. A. Ortega, On graded categorical

groups and equivariant group extensions. Canad. J. Math. 54 (5) (2002), 970{997.

A. M. Cegarra, E. Khmaladze, Homotopy classication of braided graded categor-

ical groups, J. Pure and Applied Algebra 209 (2007), 411{437.

A. M. Cegarra, E. Khmaladze, Homotopy classication of graded Picard categories,

Adv. Math. 213 (2007), 644{686.

A. Frohlich and C. T. C. Wall, Graded monoidal categories, Composition Math.

(1974), 229{285.

A. Grothendieck, Categories brees et descente, (SGA I, expose VI), Lecture Notes

in Math. 224, Springer, Berlin, 1971, 145-194.

S. MacLane, Cohomology theory of abelian groups, Proc. International Congress

of Mathematicians, II (1950), 8-14.

A. Joyal and R. Street, Braided monoidal categories, Macquarie Mathematics Report

No. 860081, November 1986.

A. Joyal, R. Street, Braided tensor categories, Adv. Math. 102 (1993) 20-78.

N. T. Quang, N. T. Thuy and P. T. Cuc, On monoidal functors between (braided)

Gr-categories, arXiv: 1105.5186v1 [math.CT] 26 May 2011.

N. T. Quang, The factor sets of Gr-categories of the type (;A), International

Journal of Algebra, 4, 2010, No 14, 655-668.

H. X. Sinh, Gr-categories, These de doctorat, Universite Paris VII, 1975.

Published

2013-03-27