CLASSIFICATION OF GRADED BRAIDED CATEGORICAL GROUPS BY PSEUDO-FUNCTORS
Abstract
In this paper we use the Grothendieck's equivalence of contravariantpseudo-functors over a category and the cofibrations over this category to prove thatthere is an isomorphism between the category ofReferences
A. M. Cegarra, A. R. Garzon and J. A. Ortega, Graded extensions of monoidal
categories, J. Algebra 241 (2) (2001), 620{657.
A. M. Cegarra, J. M. Garca - Calcines and J. A. Ortega, On graded categorical
groups and equivariant group extensions. Canad. J. Math. 54 (5) (2002), 970{997.
A. M. Cegarra, E. Khmaladze, Homotopy classication of braided graded categor-
ical groups, J. Pure and Applied Algebra 209 (2007), 411{437.
A. M. Cegarra, E. Khmaladze, Homotopy classication of graded Picard categories,
Adv. Math. 213 (2007), 644{686.
A. Frohlich and C. T. C. Wall, Graded monoidal categories, Composition Math.
(1974), 229{285.
A. Grothendieck, Categories brees et descente, (SGA I, expose VI), Lecture Notes
in Math. 224, Springer, Berlin, 1971, 145-194.
S. MacLane, Cohomology theory of abelian groups, Proc. International Congress
of Mathematicians, II (1950), 8-14.
A. Joyal and R. Street, Braided monoidal categories, Macquarie Mathematics Report
No. 860081, November 1986.
A. Joyal, R. Street, Braided tensor categories, Adv. Math. 102 (1993) 20-78.
N. T. Quang, N. T. Thuy and P. T. Cuc, On monoidal functors between (braided)
Gr-categories, arXiv: 1105.5186v1 [math.CT] 26 May 2011.
N. T. Quang, The factor sets of Gr-categories of the type (;A), International
Journal of Algebra, 4, 2010, No 14, 655-668.
H. X. Sinh, Gr-categories, These de doctorat, Universite Paris VII, 1975.