TỔNG HỢP, ĐẶC TRƯNG VÀ TÍNH CHẤT NHẠY KHÍ CỦA Fe2O3 ĐIỀU CHẾ TỪ HẠT NANO Fe3O4

Authors

  • Nguyễn Đức Cường Khoa Du lịch - Đại học Huế

Abstract

In this study, Fe3O4 nanoparticles have been prepared by co-precipitation method. The crystal structures and morphologies of as-synthesized nanoparticles were characterized X-ray diffraction, and transmission electronic microscopy. a-Fe2O3 nanoparticles were fabricated from the Fe3O4 nanoparticles by heat treatment in air atmosphere at 600 oC and their gas sensing properties were investigated. The performance of the a-Fe2O3 in the detection of toxic and flammable gases such as carbon oxide, ammonia, ethanol, and hydrogen was evaluated. The Fe2O3 based gas sensors exhibited high sensitivity and a response time of less than a minute to analytic gases.

Author Biography

Nguyễn Đức Cường, Khoa Du lịch - Đại học Huế

Trưởng phòng Đào tạo - Công tác sinh viên

References

Mahmoudi M., Sant S., Wang B., Laurent S., Sen T. (2011), “Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy”, Advanced Drug Delivery Reviews, 63, pp. 24–46.

Wang L., Park H. Y., Lim S. I. I., Schadt M. J., Mott D., Luo J., Wang X., and Zhong C. J. (2008), “Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles”, Journal of Materials Chemistry, 18, pp. 2629–2635.

Hong R. Y., Li J. H., Zhang S. Z., Li H. Z., Zheng Y., Ding J. M., Wei D. G. (2009), “Preparation and characterization of silica-coated Fe3O4 nanoparticles used as precursor of ferrofluids”, Applied Surface Science, 255, pp. 3485–3492.

Zhang J., Du J., Qian Y., Yin Q., Zhang D. (2010), “Shape-controlled synthesis and their magnetic properties of hexapod-like, flake-like and chain-like carbon-encapsulated Fe3O4 core/shell composites”, Materials Science and Engineering B, 170, pp. 51–57.

Xu X. Q., Shen H., Xu J. R., Xie M. Q., Li X. J. (2006), “The colloidal stability and core-shell structure of magnetite nanoparticles coated with alginate”, Applied Surface Science, 253, pp. 2158–2164.

Wu J. H., Ko S. P., Liu H. L., Jung M. H., Lee J. H., Ju J. S., Kim Y. K. (2008), “Sub 5 nm Fe3O4 nanocrystals via coprecipitation method”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313, pp. 268–272.

G., Bonavita A., Micali G., Donato N., Deorsola F. A., Mossino P., Amato I., Benedetti B. D. (2006), “Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion”, Sensors and Actuators B: Chemical, 117, pp. 196–204.

Tan O. K., Cao W., Zhu W., Chai J. W., Pan J. S. (2003), “Ethanol sensors based on nano-sized -Fe2O3 with SnO2 , ZrO ,TiO2 solid solutions”, Sensors and Actuators B: Chemical, 93, pp. 396–401.

Tan O. K., Zhu W., Yan Q., Kong L. B. (2000), “Size effect and gas sensing characteristics of nanocrystalline xSnO2–(1-x) -Fe2O3 ethanol sensors”, Sensors and Actuators B: Chemical, 65, pp. 361–365.

Hara K., Nishida N. (1994), “H2 sensor using Fe2O3-based thin film”, Sensors and Actuator B: Chemical, 20, 181-186.

Patil D. R., Patil L. A. (2006), “Preparation and study of NH3 gas sensing behavior of Fe2O3 doped ZnO thick film resistors”, Sensors & Transducers, 70, pp. 661-670.

Cuong D. N. , Hoa T. T., Khieu Q. D., Lam D. T., Hoa D. N., Hieu V. N. (2012), “Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan”, Journal of Alloys and Compounds, 523, pp. 120–126.

Patil D., Patil V., Patil P. (2011), “Highly sensitive and selective LPG sensor based on -Fe2O3 nanorods”, Sensors and Actuators B: Chemical, 152, pp. 299–306.

Published

2014-02-27