Neofusicoccum parvum: A NOVEL PATHOGEN SPECIES CAUSING WILTED LEAF AND DIEBACK PETIOLES ON LOTUS (Nelumbo nucifera) IN THUA THIEN HUE, VIETNAM
PDF (English)

Từ khóa

Neofusicoccum parvum
phát sinh loài
cây sen
Vietnam
khô xoăn lá Neofusicoccum parvum
dieback disease
phylogeny
lotus
Vietnam

Tóm tắt

Lotus (Nelumbo nucifera) is an essential species in many countries. In Vietnam, the lotus is a plant with cultural and spiritual significance, representing purity, spiritual growth, and enlightenment. However, petiole dieback and wilted dry leaves are severe diseases that weaken the host and decrease leaf photosynthesis, reducing lotus production. In this study, a new dieback and wilted leaf pathogen were identified via its morphology, phylogeny, and pathogenicity. Four representative Botryosphaeriaceae isolates from lotus fields in Hue, Phong Dien, and Phu Loc were selected for identification and pathogenicity testing. Based on morphological and phylogenetic analyses and by using the ribosomal internal transcribed spacer region (ITS) and β-tubulin (tub-2) gene sequences, we identified four isolates as Neofusicoccum parvum. In the pathogenicity test, typical symptoms appear on the inoculated lotus petioles, including dieback, curving, and wilted leaves. These symptoms are consistent with those observed in the field. In addition to identifying the pathogen species responsible for lotus disease, this study provides valuable insights into the taxonomy and phylogenetic relationships of new fungal pathogens that affect lotus fields. These findings can contribute to effective management strategies to control these diseases and improve lotus production. To the best of our knowledge, this is the first report of characterization and phylogenetic analysis of N. fusicoccum as the causal agent of wilted leaves and dieback disease in Thua Thien Hue, Vietnam.

https://doi.org/10.26459/hueunijard.v132i3C.7275
PDF (English)

Tài liệu tham khảo

  1. Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., Groenewald, J. Z. & Crous, P. W. (2013), The Botryosphaeriaceae: Genera and species known from culture, Studies in Mycology, 76. https://doi.org/10.3114/sim0021.
  2. Slippers, B., Crous, P. W., Jami, F., Groenewald, J. Z. & Wingfield, M. J. (2017), Diversity in the Botryosphaeriales: Looking back, looking forward, Fungal Biology, 121(4). https://doi.org/10.1016/j.funbio.2017.02.002.
  3. Mehl, J., Wingfield, M. J., Roux, J. & Slippers, B. (2017), Invasive everywhere? Phylogeographic analysis of the globally distributed tree pathogen lasiodiplodia theobromae, Forests, 8(5). https://doi.org/10.3390/f8050145.
  4. Haenzi, M., Cochard, B., Chablais, R., Crovadore, J. & Lefort, F. (2021), Neofusicoccum parvum, a new agent of sequoia canker and dieback identified in Geneva, Switzerland, Forests, 12(4). https://doi.org/10.3390/f12040434.
  5. Diniz, I., Batista, D., Pena, A. R., Rodrigues, A. S. B., Reis, P., Balde, A., Indjai, B., Catarino, L. & Monteiro, F. (2021), First report of dieback caused by Neofusicoccum batangarum in Cashew in Guinea-Bissau, In Plant Disease, 105(4). https://doi.org/10.1094/PDIS-10-20-2308-PDN.
  6. Belair, M., Grau, A. L., Chong, J., Tian, X., Luo, J., Guan, X. & Pensec, F. (2022), Pathogenicity Factors of Botryosphaeriaceae Associated with Grapevine Trunk Diseases: New Developments on Their Action on Grapevine Defense Responses, Pathogens, 11(8). https://doi.org/10.3390/pathogens11080951.
  7. Dissanayake, A. J., Phillips, A. J. L., Li, X. H. & Hyde, K. D. (2016), Botryosphaeriaceae: Current status of genera and species, Mycosphere, 7(7). https://doi.org/10.5943/mycosphere/si/1b/13.
  8. Li, G. Q., Liu, F. F., Li, J. Q., Liu, Q. L. & Chen, S. F. (2018), Botryosphaeriaceae from eucalyptus plantations and adjacent plants in China, Persoonia: Molecular Phylogeny and Evolution of Fungi, 40(June). https://doi.org/10.3767/persoonia.2018.40.03.
  9. Li, Y., Pu, M., Cui, Y., Gu, J., Chen, X., Wang, L., Wu, H., Yang, Y. & Wang, C. (2023), Research on the isolation and identification of black spot disease of Rosa chinensis in Kunming, China, Scientific Reports, 13(1), 8299. https://doi.org/10.1038/s41598-023-35295-1.
  10. Yildiz, A., Benlioglu, S., Benlioglu, K. & Korkom, Y. (2022), Occurrence of twig blight and branch dieback of walnut caused by Botryosphaeriaceae species in Turkey, Journal of Plant Diseases and Protection, 129(3), 687–693. https://doi.org/10.1007/s41348-022-00591-x.
  11. Espinoza, J. G., Briceño, E. X., Chávez, E. R., Úrbez-Torres, J. R. & Latorre, B. A. (2009), Neofusicoccum spp. associated with stem canker and dieback of blueberry in Chile, Plant Disease, 93(11). https://doi.org/10.1094/PDIS-93-11-1187.
  12. Glass, N. L. & Donaldson, G. C. (1995), Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes, Applied and Environmental Microbiology, 61(4). https://doi.org/10.1128/aem.61.4.1323-1330.1995.
  13. White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990), Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics: PCR - Protocols and Applications - A Laboratory Manual, In PCR Protocols: A Guide to Methods and Applications (Issue 1).
  14. Hall, T. A. (1999), BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT, Nucleic Acids Symposium Series, 41.
  15. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018), MEGA X: Molecular evolutionary genetics analysis across computing platforms, Molecular Biology and Evolution, 35(6). https://doi.org/10.1093/molbev/msy096.
  16. Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., Lanfear, R. & Teeling, E. (2020), IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era, Molecular Biology and Evolution, 37(5). https://doi.org/10.1093/molbev/msaa015.
  17. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. (2017), ModelFinder: Fast model selection for accurate phylogenetic estimates, Nature Methods, 14(6). https://doi.org/10.1038/nmeth.4285.
  18. Letunic, I. & Bork, P. (2021), Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation, Nucleic Acids Research, 49(W1). https://doi.org/10.1093/nar/gkab301.
  19. Bezerra, J. D. P., Crous, P. W., Aiello, D., Gullino, M. L., Polizzi, G. & Guarnaccia, V. (2021), Genetic diversity and pathogenicity of botryosphaeriaceae species associated with symptomatic citrus plants in Europe, Plants, 10(3). https://doi.org/10.3390/plants10030492.
  20. Hilário, S., Lopes, A., Santos, L. & Alves, A. (2020), Botryosphaeriaceae species associated with blueberry stem blight and dieback in the Centre Region of Portugal. European Journal of Plant Pathology, 156(1). https://doi.org/10.1007/s10658-019-01860-6.
  21. Lopes, A., Barradas, C., Phillips, A. J. L. & Alves, A. (2016), Diversity and phylogeny of Neofusicoccum species occurring in forest and urban environments in Portugal, Mycosphere, 7(7). https://doi.org/10.5943/mycosphere/si/1b/10.
  22. Iturritxa, E., Slippers, B., Mesanza, N. & Wingfield, M. J. (2011), First report of Neofusicoccum parvum causing canker and die-back of Eucalyptus in Spain, Australasian Plant Disease Notes, 6(1). https://doi.org/10.1007/s13314-011-0019-5.
  23. Yildiz, A., Benlioglu, S., Benlioglu, K. & Korkom, Y. (2022). Occurrence of twig blight and branch dieback of walnut caused by Botryosphaeriaceae species in Turkey, Journal of Plant Diseases and Protection, 129(3). https://doi.org/10.1007/s41348-022-00591-x.
  24. Berraf-Tebbal, A., Guereiro, M. A. & Philips, A. J. L. (2014), Phylogeny of Neofusicoccum species associated with grapevine trunk diseases in Algeria, with description of Neofusicoccum algeriense sp. nov., Phytopathologia Mediterranea, 53(3). https://doi.org/10.14601/Phytopathol_Mediterr-14385.
  25. Alberti, I., Prodi, A., Nipoti, P. & Grassi, G. (2018), First report of Neofusicoccum parvum causing stem and branch canker on Cannabis sativa in Italy, Journal of Plant Diseases and Protection, 125(5). https://doi.org/10.1007/s41348-018-0174-4.
  26. Roberts, A. J. & Punja, Z. K. (2022), Pathogenicity of seedborne Alternaria and Stemphylium species and stem-infecting Neofusicoccum and Lasiodiplodia species to cannabis (Cannabis sativa L., marijuana) plants, Canadian Journal of Plant Pathology, 44(2). https://doi.org/10.1080/07060661.2021.1988712.
  27. Manca, D., Bregant, C., Maddau, L., Pinna, C., Montecchio, L. & Linaldeddu, B. T. (2020), First report of canker and dieback caused by Neofusicoccum parvum and Diplodia olivarum on oleaster in Italy, Italian Journal of Mycology, 49. https://doi.org/10.6092/issn.2531-7342/11048.
  28. Zhixing, W., Yahong, Z., Yu, F., Qiyu, W., Jiani, L., Min, Y., Yu, Z., Lei, Y. & Feiyan, H. (2022), First report of Neofusicoccum parvum causing stem blight and dieback of Osmanthus fragrans in China, Journal of Plant Pathology, 104(1). https://doi.org/10.1007/s42161-021-00936-9.
  29. Choi, S., Paul, N. C., Lee, K. H., Kim, H. J. & Sang, H. (2021), Morphology, molecular phylogeny, and pathogenicity of neofusicoccum parvum, associated with leaf spot disease of a new host, the Japanese bay tree (Machilus thunbergii), Forests, 12(4). https://doi.org/10.3390/f12040440.
  30. Xu, D., Xi, P., Xu, J., Lin, Z., Jiang, Z. & Qiao, F. (2022), Association of Neofusicoccum parvum with leaf scorch on Cinnamomum cassia in China, Forest Pathology, 52(1). https://doi.org/10.1111/efp.12726.
  31. Slippers, B., Boissin, E., Phillips, A. J. L., Groenewald, J. Z., Lombard, L., Wingfield, M. J., Postma, A., Burgess, T. & Crous, P. W. (2013), Phylogenetic lineages in the Botryosphaeriales: A systematic and evolutionary framework. Studies in Mycology, 76. https://doi.org/10.3114/sim0020.