BUILDING THE ASSESSMENT SCALE ON STAKEHOLDERS’ READINESS LEVEL TO APPLY BLOCKCHAIN TECHNOLOGY TO THE AGRICULTURAL SUPPLY CHAIN

Tóm tắt

This study is conducted to build an assessment scale on stakeholders' readiness level to apply blockchain technology to the agricultural supply chain. By referencing the theoretical model of Technology - Organization - Environment (TOE) combined with the qualitative research step, the study proposed a new scale with 65 observed items and 18 factors. Next, the study carries out a quantitative research step based on the case of the pork supply chain in Hue. The sample consists of 365 individual/organizational stakeholders. The analysis results shortened the proposed scale to 62 observed items, 18 factors, and 4 second-order factors – including readiness on technological conditions (TEC), readiness on inter-organizational conditions (INTER), readiness on intra-organizational conditions (INTRA), and readiness on environmental conditions (ENV). Further analyzing the importance of the factors, the results reveal that relative advantage (RA), trust (TRU), trading partner pressure (TPP), firm size (FS), top management support (TMS), and competitive pressure (CP) are considered the essential foundations for the adoption of blockchain technology to the agricultural supply chain.

https://doi.org/10.26459/hueunijed.v132i5B.7187
PDF (English)

Tài liệu tham khảo

  1. Tian, F. (2017), A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things, in 2017 International conference on service systems and service management, IEEE, 1–6.
  2. Dabbene, F., Gay, P. and Tortia, C. (2014), Traceability issues in food supply chain management: A review, Biosyst. Eng., 120, 65–80.
  3. Agwu, A. E., Ekwueme, J. N., and Anyanwu, A. C. (2008), Adoption of improved agricultural technologies disseminated via radio farmer programme by farmers in Enugu State, Nigeria, Afr. J. Biotechnol., 7(9).
  4. Saetang, W., Tangwannawit, S., and Jensuttiwetchakul, T. (2020), The effect of technology-organization-environment on adoption decision of big data technology in Thailand, Int J Electr Comput, 10(6), 6412.
  5. Alazab, M., Alhyari, S., Awajan, A., and Abdallah, A. B. (2021), Blockchain technology in supply chain management: an empirical study of the factors affecting user adoption/acceptance, Clust. Comput., 24(1), Art. no.1.
  6. Ghode, D., Yadav, V., Jain, R. and Soni, G. (2020), Adoption of blockchain in supply chain: an analysis of influencing factors, J. Enterp. Inf. Manag.
  7. Kamilaris, A., Fonts, A., and Prenafeta-Boldu, F. X. (2019), The rise of blockchain technology in agriculture and food supply chains,” Trends Food Sci. Technol., vol. 91, pp. 640–652.
  8. Rogerson, M. and Parry, G. C. (2020), Blockchain: case studies in food supply chain visibility, Supply Chain Manag. Int. J.
  9. Hoa, V. T., Thai, P. T., and Phuong, N. T. H. (2018), Factors influencing the decision to buy fruits and vegetables from supermarket channel of consumers in Nha Trang, Sci. Technol. Dev. J.-Econ.-Law Manag., 2(4), 22–35.
  10. Sander, F., Semeijn, J. and Mahr, D. (2018), The acceptance of blockchain technology in meat traceability and transparency, Br. Food J..
  11. Van Campenhout, B. (2022), ICTs to address information inefficiencies in food supply chains, Agric. Econ., 53(6), 968–975, doi: 10.1111/agec.12731.
  12. Raj, A. and Jeyaraj, A. (2023), Antecedents and consequents of industry 4.0 adoption using technology, organization and environment (TOE) framework: A meta-analysis, Ann. Oper. Res., 322(1), 101–124, doi: 10.1007/s10479-022-04942-7.
  13. Laroiya, C., Saxena, D. and Komalavalli, C. (2020), Chapter 9 - Applications of blockchain technology, Handbook of Research on Blockchain Technology, 213–243. doi: 10.1016/B978-0-12-819816-2.00009-5.
  14. Shahid, A., Almogren, A., Javaid, N., Al-Zahrani, F. A., Zuair, M. and Alam, M. (2020) Blockchain-based agri-food supply chain: A complete solution, Ieee Access, 8, 69230–69243.
  15. Soriano, J. B. et al. (2020), Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017, Lancet Respir. Med., 8(6), 585–596, doi: 10.1016/S2213-2600(20)30105-3.
  16. Khan, S., Kaushik, M. K., Kumar, R. and Khan, W. (2022), Investigating the barriers of blockchain technology integrated food supply chain: a BWM approach, Benchmarking Int. J.
  17. Beck, R., Becker, C., Lindman, J. and Rossi, M. (2017), Opportunities and risks of blockchain technologies (Dagstuhl Seminar 17132), in Dagstuhl Reports, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
  18. Johansen, S. K. (2018), A comprehensive literature review on the Blockchain as a technological enabler for innovation, Dept Inf. Syst. Mannh. Univ. Ger., 1–29.
  19. Nayal, K., Raut, R. D., Narkhede, B. E., Priyadarshinee, P., Panchal, G. B., and Gedam, V. V. (2021), Antecedents for blockchain technology-enabled sustainable agriculture supply chain, Ann. Oper. Res., 1–45.
  20. Beck, R., Becker, C., Lindman, J., and Rossi, M. (2017), Opportunities and risks of blockchain technologies (Dagstuhl Seminar 17132), in Dagstuhl Reports, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
  21. Lindman, J., Tuunainen, V. K., and Rossi, M. (2017), Opportunities and risks of Blockchain Technologies–a research agenda.
  22. D. D. Q. Hao, T. T. Hoa, and N. H. Dung (2020), Factors affecting customers’acceptance of the adoption of blockchain technology at Dong A Commercial Joint Stock Bank, Hue Branch, Hue Univ. J. Sci. Econ. Dev., 129(5A), 5–16.
  23. Depietro, R., Wiarda, E. and Fleischer, M. (1990), The context for change: Organization, technology and environment, Process. Technol. Innov., 151–175.
  24. Lin, H. -F. (2014), Understanding the determinants of electronic supply chain management system adoption: Using the technology–organization–environment framework, Technol. Forecast. Soc. Change, 86, 80–92.
  25. Ali, J. (2012), Factors affecting the adoption of information and communication technologies (ICTs) for farming decisions, J. Agric. Food Inf., 13(1), 78–96.
  26. Alvarez, J. and Nuthall, P. (2006), Adoption of computer based information systems: The case of dairy farmers in Canterbury, NZ, and Florida, Uruguay, Comput. Electron. Agric., 50(1), 48–60.
  27. Baker, J. (2012), The technology–organization–environment framework, Inf. Syst. Theory Explain. Predict. Our Digit. Soc., 1(231–245).
  28. Chittipaka, V., Kumar, S., Sivarajah, U., Bowden, J. L. H. and Baral, M. M. (2022) Blockchain technology for supply chains operating in emerging markets: An empirical examination of technology-organization-environment (TOE) framework, Ann. Oper. Res., pp. 1–28, 2022.
  29. Malik, S., Chadhar, M., Vatanasakdakul, S. and Chetty, M. (2021), Factors affecting the organizational adoption of blockchain technology: Extending the technology–organization–environment (TOE) framework in the Australian context, Sustainability, 13(16), 9404.
  30. Cudeck, R. (2000), Exploratory factor analysis, in Handbook of applied multivariate statistics and mathematical modeling, Elsevier, 265–296.
  31. Fabrigar, L. R. and Wegener, D. T. (2011), Exploratory factor analysis, Oxford University Press.
  32. Arbuckle, J. L. (2006), 17.0 user’s guide, in Crawfordville, FL. Amos Development Corporation, Citeseer.
  33. Hair, J. F., Anderson, R. E., Tatham, R. L., and William, C. (1998), Black (1998), Multivariate data analysis, Upper Saddle River, NJ: Prentice Hall.
  34. Nunnally, J. C. (1978), Psychometric Theory 2nd ed., Mcgraw hill book company.
  35. Peterson, R. A. (1994), A meta-analysis of Cronbach’s coefficient alpha, J. Consum. Res., 21(2), 381–391.
  36. Slater, S. F. (1995), Issues in conducting marketing strategy research, J. Strateg. Mark., 3(4), 257–270.
  37. Anderson, J. C. and Gerbing, D. W. (1988), Structural equation modeling in practice: A review and recommended two-step approach., Psychol. Bull., 103(3), 411.
  38. Takagi, C., Purnomo, S. H. and Kim, M. K. (2021), Adopting smart agriculture among organic farmers in Taiwan, Asian J. Technol. Innov., 29(2), 180–195.
  39. Gunasekera, D. and Valenzuela, E. (2020), Adoption of blockchain technology in the australian grains trade: An assessment of potential economic effects, Econ. Pap. J. Appl. Econ. Policy, 39(2), 152–161.
  40. Vlachos, I. P. (2004), Adoption of electronic data interchange by agribusiness organizations, J. Int. Food Agribus. Mark., 16(1), 19–42.
  41. Yoon, C., Lim, D., and Park, C. (2020), Factors affecting adoption of smart farms: The case of Korea, Comput. Hum. Behav., 108, 106309.
Creative Commons License

công trình này được cấp phép theo Creative Commons Ghi công-Chia sẻ tương tự 4.0 License International .

Bản quyền (c) 2023 Array