Abstract
Let G be a connected real semisimple Lie group with finite center and θ be a Cartan involution of G. Suppose that K is the maximal compact subgroup of G corresponding to the Cartan involution θ. The coset space X = G/K is then a Riemannian symmetric space. In this paper, by choosing the reduced root system Σ0 = {α ∈ Σ | 2α /∈ Σ; α 2 ∈/ Σ} insteads of the restricted root system Σ and using the action of the Weyl group, firstly we construct a compact real analytic manifold Xb 0 in which the Riemannian symmetric space G/K is realized as an open subset and that G acts analytically on it, then we consider the real analytic structure of Xb 0 induced from the real analytic srtucture of AbIR, the compactification of the corresponding vectorial part.This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2018 Array