IMPROVEMENT IN THERMOELECTRIC PROPERTIES OF CuAlO2 BY ADDING PARTIAL SUBSTITUTION Ca
PDF (Vietnamese)

Keywords

gốm CuAlO2
tạp Ca
nhiệt điện. CuAlO2 ceramics
Ca substitution
thermoelectric

How to Cite

1.
Tùng VT, Tú LTU, Trang DTH, Phương LTL, Hương LTT, Tĩnh NT. IMPROVEMENT IN THERMOELECTRIC PROPERTIES OF CuAlO2 BY ADDING PARTIAL SUBSTITUTION Ca. hueuni-jns [Internet]. 2019Feb.28 [cited 2024Nov.14];128(1A):5-12. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/5069

Abstract

CuAl1-xCaxO2 (0  x  0.2) ceramics were prepared by solid state reaction method. Structure of the sample were investigated by X – ray diffraction patterns; contained the CuAl1-xCaxO2 solid solution with a rhombohedral structure, along with second phases such as CuO, CaO, and CaAl4O7. And their microstructure showed by SEM indicated that Ca caused the increasing of grain sizes. It was found that the substitution of Ca gave an increase in Seebeck coefficient despite the decreasing of the electrical conductivity. The highest value of power factor (5.09×10−5Wm−1K−2) was attained for CuAl0.95Ca0.05O2 sintered at 1423 K. We have demonstrated in this study that Ca addition have an important role to enhance high-temperature thermoelectric properties of CuAlO2.

https://doi.org/10.26459/hueuni-jns.v128i1A.5069
PDF (Vietnamese)

References

  1. Ohtaki M, Ogura D, Eguchi K, Arai H. High-temperature thermoelectric properties of In2O3-based mixed oxides and their applicability to thermoelectric power generation. Journal of Materials Chemistry. 1994;4(5):653. DOI: https://doi.org/10.1039/jm9940400653
  2. Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H. Electrical Transport Properties and High-Temperature Thermoelectric Performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). Journal of Solid State Chemistry. 1995;120(1):105-111. DOI: https://doi.org/10.1006/jssc.1995.1384
  3. Ohtaki M, Tsubota T, Eguchi K, Arai H. High‐temperature thermoelectric properties of (Zn1−xAlx)O. Journal of Applied Physics. 1996;79(3):1816-1818. DOI: https://doi.org/10.1063/1.360976
  4. Yasukawa M, Murayama N. High-temperature thermoelectric properties of the oxide material: Ba1−xSrxPbO3 (x = 0 − 0.6). Journal of Materials Science Letters. 1997;16(21):1731–1734. DOI: https://doi.org/10.1023/A:1018515223271
  5. Shikano M, Funahashi R. Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Applied Physics Letters. 2003;82(12):1851-1853. DOI: https://doi.org/10.1063/1.1562337
  6. Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power inNaCo2O4 single crystals. Physical Review B. 1997;56(20):R12685-R12687. DOI: https://doi.org/10.1103/physrevb.56.r12685
  7. Ishiguro T, Kitazawa A, Mizutani N, Kato M. Single-crystal growth and crystal structure refinement of CuAlO2. Journal of Solid State Chemistry. 1981;40(2):170-174. DOI: https://doi.org/10.1016/0022-4596(81)90377-7
  8. Koumoto K, Koduka H, Seo W. Thermoelectric properties of single crystal CuAlO2 with a layered structure. Journal of Materials Chemistry. 2001;11(2):251-252. DOI: https://doi.org/10.1039/b006850k
  9. Park K, Ko K, Seo W. Thermoelectric properties of CuAlO2. Journal of the European Ceramic Society. 2005;25(12):2219-2222. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.034
  10. Banerjee AN, Chattopadhyay KK. Size-dependent optical properties of sputter-deposited nanocrystalline p-type transparent CuAlO2 thin films. Journal of Applied Physics. 2005;97(8):084308. DOI: https://doi.org/10.1063/1.1866485
  11. Dittrich T, Dloczik L, Guminskaya T, Lux-Steiner MC, Grigorieva N, Urban I. Photovoltage characterization of CuAlO2 crystallites. Applied Physics Letters. 2004;85(5):742-744. DOI: https://doi.org/10.1063/1.1776611
  12. Deng Z, Zhu X, Tao R, Dong W, Fang X. Synthesis of CuAlO2 ceramics using sol-gel. Materials Letters. 2007;61(3):686-689. DOI: https://doi.org/10.1016/j.matlet.2006.05.042
  13. Hương LTT, Xây dựng phương pháp đo tính chất nhiệt điện của vật liệu ở nhiệt độ cao [master's thesis], 2011, Hà Nội (VN): Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; 2011.
  14. D.M. Rowe. CRC Handbook of Thermoelectrics. 1st ed. Boca Raton: CRC Press; 1995. 701 p.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2019 Array