Na2Fe3(SO4)4 as a new high-voltage potential cathode material for sodium-ion batteries
PDF

How to Cite

1.
Tran TL, Luong HD, Pham TL, Phung VB, Dinh VA. Na2Fe3(SO4)4 as a new high-voltage potential cathode material for sodium-ion batteries. hueuni-jns [Internet]. 2021Oct.5 [cited 2024Nov.23];130(1B):59-67. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/6190

Abstract

Based on the density functional theory, we propose a promising cathode material, Na2Fe3(SO4)4, applicable for sodium-ion batteries. The crystal structure, stability, average voltage, and diffusion mechanism are carefully investigated to evaluate the electrochemical properties. The proposed material exhibits a high voltage of 4.0 V during the Na extraction. A small polaron is proved to be formed preferably at the first nearest Fe sites to Na vacancy and simultaneously accompanies the Na vacancy during its migration. Four elementary diffusion processes of the polaron–Na vacancy complexes, namely two parallel and two crossing processes, have been explored. The significant difference of activation energies between parallel and crossing processes suggests the substantial effect of the small polaron migration on the Na vacancy diffusion. We found that the parallel process along the [001] direction has the lowest activation energy of 808 meV, implying that the Na vacancy preferably diffuses in a zigzag pathway along the [001] direction.

https://doi.org/10.26459/hueunijns.v130i1B.6190
PDF

References

  1. Kavanagh L, Keohane J, Garcia Cabellos G, Lloyd A, Cleary J. Global lithium sources—industrial use and future in the electric vehicle industry: A review. Resources. 2018;7(3):57. DOI: https://doi.org/10.3390/resources7030057
  2. Delmas C, Braconnier J-J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics. 1981 08;3-4:165-169. DOI: https://doi.org/10.1016/0167-2738(81)90076-x
  3. Fleischer M. The abundance and distribution of the chemical elements in the earth's crust. Journal of Chemical Education. 1954;31(9):446. DOI: https://doi.org/10.1021/ed031p446
  4. Zhu Y, Xu Y, Liu Y, Luo C and Wang C. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale. 2013;5(2):780-787. DOI: https://doi.org/10.1039/c2nr32758a
  5. Okada S, Takahashi Y, Kiyabu T, Doi T, Yamaki J, Nishida T. Layered transition metal oxides as cathodes for sodium secondary battery. ECS Meeting Abstracts. 2006.
  6. Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials. 2012;11(6):512-517. DOI: https://doi.org/10.1038/nmat3309
  7. EllisBL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nature Materials. 2007;6(10):749-753. DOI: https://doi.org/10.1038/nmat2007
  8. Tang W, Song X, Du Y, Peng C, Lin M, Xi S, et al. High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A. 2016;4(13):4882-4892. DOI: https://doi.org/10.1039/c6ta01111j
  9. Barpanda P, Ye T, Nishimura S-i, Chung S-C, Yamada Y, Okubo M, et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochemistry Communications. 2012;24:116-119. DOI: https://doi.org/10.1016/j.elecom.2012.08.028
  10. Kim H, Park I, Seo D-H, Lee S, Kim S-W, Kwon WJ, et al. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. Journal of the American Chemical Society. 2012 06 14;134(25):10369-10372. DOI: https://doi.org/10.1021/ja3038646
  11. Barpanda P, Oyama G, Ling CD and Yamada A. Kröhnkite-Type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries. Chemistry of Materials. 2014;26(3):1297-1299. DOI: https://doi.org/10.1021/cm4033226
  12. Gao J, Sha X, Liu X, Song L, Zhao P. Preparation, structure and properties of Na2Mn3(SO4)4: a new potential candidate with high voltage for Na-ion batteries. Journal of Materials Chemistry A. 2016;4(30):11870-11877. DOI: https://doi.org/10.1039/c6ta02629j
  13. Dinh VA, Nara J, Ohno T. A New Insight into the Polaron–Li Complex Diffusion in Cathode Material LiFe1-yMnyPO4 for Li Ion Batteries. Applied Physics Express. 2012;5(4):045801. DOI: https://doi.org/10.1143/apex.5.045801
  14. Bui KM, Dinh VA , Ohno T. Diffusion Mechanism of Polaron–Li Vacancy Complex in Cathode Material Li2FeSiO4. Applied Physics Express. 2012;5(12):125802. DOI: https://doi.org/10.1143/apex.5.125802
  15. Duong DM, Dinh VA, Ohno T. Quasi-Three-Dimensional Diffusion of Li ions in Li3FePO4CO3: First-Principles Calculations for Cathode Materials of Li-Ion Batteries. Applied Physics Express. 2013;6(11):115801. DOI: https://doi.org/10.7567/apex.6.115801
  16. Bui KM, Dinh VA, Okada S, Ohno T. Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and eletronic structures and polaron-Na vacancy complex diffusion. Physical Chemistry Chemical Physics. 2015;17(45):30433-30439. DOI: https://doi.org/10.1039/c5cp05323d
  17. Bui KM, Dinh VA, Okada S, Ohno T. Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study. Physical Chemistry Chemical Physics. 2016;18(39):27226-27231. DOI: https://doi.org/10.1039/c6cp05164b
  18. Debbichi M, Debichi N, Dinh VA, Lebegue S. First principles study of the crystal, electronic structure, and diffusion mechanism of polaron-Na vacancy of Na3MnPO4CO3 for Na-ion battery applications. Journal of Physics D: Applied Physics. 2016;50(4):045502. DOI: https://doi.org/10.1088/1361-6463/aa518d
  19. Luong HD, Pham TD, Morikawa Y, Shibutani Y, Dinh VA. Diffusion mechanism of Na ion–polaron complex in potential cathode materials NaVOPO4 and VOPO4 for rechargeable sodium-ion batteries. Physical Chemistry Chemical Physics. 2018;20(36):23625-23634. DOI: https://doi.org/10.1039/c8cp03391a
  20. Tran TL, Luong HD, Duong DM, Dinh NT, Dinh VA. Hybrid functional study on small polaron formation and ion diffusion in the cathode material Na2Mn3(SO4)4. ACS Omega. 2020;5(10):5429-5435. DOI: https://doi.org/10.1021/acsomega.0c00009
  21. Luong HD, Dinh VA, Momida H, Oguchi T. Insight into the diffusion mechanism of sodium ion – polaron complexes in orthorhombic P2 layered cathode oxide NaxMnO2. Physical Chemistry Chemical Physics. 2020;22(32):18219-18228. DOI: https://doi.org/10.1039/d0cp03208e
  22. Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Physical Review B. 1993;48(17):13115-13118. DOI: https://doi.org/10.1103/physrevb.48.13115
  23. Kresse G, Joubert D. From ultrasoft psuedopotentials to the projector augmented-wave method. Physical Review B. 1999;59(3):1758-1775. DOI: https://doi.org/10.1103/physrevb.59.1758
  24. Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter. 1994;6(40):8245-8257. DOI: https://doi.org/10.1088/0953-8984/6/40/015
  25. Kresse G, Furthmuller J. Efficiency of Ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science. 1996 07;6(1):15-50. DOI: https://doi.org/10.1016/0927-0256(96)00008-0
  26. Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters. 1996;77(18):3865-3868. DOI: https://doi.org/10.1103/physrevlett.77.3865
  27. Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Physical Review B. 2006;73(19). DOI: https://doi.org/10.1103/physrevb.73.195107
  28. Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Materialia. 2015;108:1-5. DOI: https://doi.org/10.1016/j.scriptamat.2015.07.021
  29. Pick RM, Cohen MH, Martin RM. Microscopic theory of force constants in the adiabatic approximation. Physical Review B. 1970;1(2):910-920. DOI: https://doi.org/10.1103/physrevb.1.910
  30. Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics. 2000;113(22):9978-9985. DOI: https://doi.org/10.1063/1.1323224
  31. Dwibedi D, Araujo RB, Chakraborty S, Shanbogh PP, Sundaram NG, Ahuja R. Na2.44Mn1.79(SO4)3: a new member of the alluaudite family of insertion compounds for sodium ion batteries. Journal of Materials Chemistry A. 2015;3(36):18564-18571. DOI: https://doi.org/10.1039/c5ta04527d
  32. Zhao J, Zhao L, Dimov N, Okada S, Nishida T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. Journal of The Electrochemical Society. 2013;160(5):A3077-A3081. DOI: https://doi.org/10.1149/2.007305jes
  33. Wongittharom N, Lee T-C, Wang C-H, Wang Y-C, Chang J-K. Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. Journal of Materials Chemistry A. 2014;2(16):5655. DOI: https://doi.org/10.1039/c3ta15273a
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array