In vitro antioxidant activity and bioactive compounds from Calocybe indica
PDF

Keywords

Nấm Trắng Sữa Calocybe indica
antioxidant activity
polysaccharide
triterpenoid
total phenolics
total flavonoid

How to Cite

1.
Nguyen QM, Le LS, Nguyen MN, Nguyen CC, Ho XAV, Nguyen VP, Tran TM, Le TT, Tran TVT, Hieu LT. In vitro antioxidant activity and bioactive compounds from Calocybe indica. hueuni-jns [Internet]. 2021Dec.31 [cited 2024Nov.14];130(1D):15-22. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/6348

Abstract

Nowadays, the use of mushrooms in medicine is ubiquitous and has achieved particular success. The antioxidants in mushrooms can deactivate free radicals. This study assesses the antioxidant potential of mushroom Calocybe indica with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging methods and the total antioxidant capacity. The mushroom’s ethanol extract exhibits acceptable activity with a low IC50 value (240.11 μg/mL), approximately 2.9 times lower than that of the mushroom Ophiocordyceps sobolifera extract. The ABTS scavenging rate of the extract is around 60% at 500 µg/mL, and the total antioxidant capacity is equivalent to 64.94 ± 1.03 mg of GA/g or 77.42 ± 0.42 μmol of AS/g.  The total phenolics, flavonoids, polysaccharides, and triterpenoids are equivalent to 29.33 ± 0.16 mg of GAE/g, 17.84 ± 0.11 mg of QUE/g (5.04 ± 0.04%), and 4.96 ± 0.04 mg of oleanolic acid/g, respectively. Specifically, the total triterpenoid content has been reported for the first time. The mushroom can have potential biomedical applications.

https://doi.org/10.26459/hueunijns.v130i1D.6348
PDF

References

  1. Carocho M, Ferreira IC. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology. 2013;51:15-25. DOI: https://doi.org/10.1016/j.fct.2012.09.021
  2. Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chemical Research in Toxicology. 2008;21(1):172-188. DOI: https://doi.org/10.1021/tx700210j
  3. Scheibmeir HD, Christensen K, Whitaker SH, Jegaethesan J, Clancy R, Pierce JD. A review of free radicals and antioxidants for critical care nurses. Intensive and Critical Care Nursing. 2005;21(1):24-28. DOI: https://doi.org/10.1016/j.iccn.2004.07.007
  4. Jiang J, Xiong YL. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat science. 2016;120:107-117. DOI: https://doi.org/10.1016/j.meatsci.2016.04.005
  5. Masisi K, Beta T, Moghadasian MH. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food chemistry. 2016;196:90-97. DOI: https://doi.org/10.1016/j.foodchem.2015.09.021
  6. Karadag A, Ozcelik B, Saner S. Review of methods to determine antioxidant capacities. Food analytical methods. 2009;2(1):41-60. DOI: https://10.1007/s12161-008-9067-7
  7. MacDonald‐Wicks LK, Wood LG, Garg ML. Methodology for the determination of biological antioxidant capacity in vitro: a review. Journal of the Science of Food and Agriculture. 2006;86(13):2046-2056. DOI: https://doi.org/10.1002/jsfa.2603
  8. Zhao L, Zhao G, Hui B, Zhao Z, Tong J, Hu X. Effect of selenium on increasing the antioxidant activity of protein extracts from a selenium‐enriched mushroom species of the Ganoderma Genus. Journal of food science. 2004;69(3):184-188. DOI: https://doi.org/10.1111/j.1365-2621.2004.tb13355.x
  9. Mishra KK, Pal RS, Arunkumar R, Chandrashekara C, Jain SK, Bhatt JC. Antioxidant properties of different edible mushroom species and increased bioconversion efficiency of Pleurotus eryngii using locally available casing materials. Food chemistry. 2013;138(2-3):1557-1563. DOI: https://doi.org/10.1016/j.foodchem.2012.12.001
  10. Subbiah KA, Balan V. A comprehensive review of tropical milky white mushroom (Calocybe indica P&C). Mycobiology. 2015;43(3):184-194. DOI: https://doi.org/10.5941/MYCO.2015.43.3.184
  11. Kumar S, Sharma VP, Shirur M, Kamal S. Status of milky mushroom (Calocybe indica) in India–A review. Mushroom Research. 2017; 26(1):21-39.
  12. Chatterjee S, Dey A, Dutta R, Dey S, Acharya K. Hepatoprotective effect of the ethanolic extract of Calocybe indica on mice with CCl4 hepatic intoxication. Int J PharmTech Res. 2011;3(4):2162-2168.
  13. Mowsumi FR, Rahaman A, Sarker NC, Choudhury BK, Hossain S. In vitro relative free radical scavenging effects of Calocybe indica (milky oyster) and Pleurotus djamor (pink oyster). World J Pharm Pharm Sci. 2015;4(07).
  14. Mishra KK, Pal RS, Arunkumar R. Antioxidant activities and bioactive compound determination from caps and stipes of specialty medicinal mushrooms Calocybe indica and Pleurotus sajor-caju (higher Basidiomycetes) from India. International journal of medicinal mushrooms. 2014;16(6). DOI: 10.1615/IntJMedMushrooms.v16.i6.50
  15. Ghosh SK, Bera T, Pal S. Antiproliferative, Apoptotic, and Antimigration Property of Ethyl Acetate Extract of Calocybe indica against HeLa and CaSki Cell Lines of Cervical Cancer, and its Antioxidant and Mycochemistry Analysis. Middle East Journal of Cancer. 2020;11(4):454-468. DOI: https://10.30476/MEJC.2020.81870.1046
  16. Rathore H, Prasad S, Sehwag S, Sharma S. Vitamin D 2 fortification of Calocybe indica mushroom by natural and artificial UVB radiations and their potential effects on nutraceutical properties. 3 Biotech. 2020;10(2):1-9. DOI: https://doi.org/10.1007/s13205-019-2024-x
  17. Govindan S, Johnson EER, Christopher J, Shanmugam J, Thirumalairaj V, Gopalan J. Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var. APK2. Experimental and Toxicologic Pathology. 2016;68(6):329-334. DOI: https://doi.org/10.1016/j.etp.2016.04.001
  18. Rathore H, Sharma A, Prasad S, Sharma S. Selenium bioaccumulation and associated nutraceutical properties in Calocybe indica mushroom cultivated on Se-enriched wheat straw. Journal of bioscience and bioengineering. 2018;126(4):482-487. DOI: https://doi.org/10.1016/j.jbiosc.2018.04.010
  19. Kumar P, Shukla SK. Effect of Curculigo orchioides in experimental hepatotoxicity in cockerels. Journal of Pharmacognosy and Phytochemistry. 2019;8(1):1012-1016.
  20. Nair VD, Panneerselvam R, Gopi R. Studies on methanolic extract of Rauvolfia species from Southern Western Ghats of India–In vitro antioxidant properties, characterisation of nutrients and phytochemicals. Industrial Crops and Products. 2012;39:17-25. DOI: https://doi.org/10.1016/j.indcrop.2012.02.006
  21. Megala J, Geetha A. Free radical-scavenging and H+, K+-ATPase inhibition activities of Pithecellobium dulce. Food chemistry. 2010;121(4):1120-1128. DOI: https://doi.org/10.1016/j.foodchem.2010.01.059
  22. Dasgupta N, De B. Antioxidant activity of Piper betle L. leaf extract in vitro. Food chemistry. 2004;88(2):219-224. DOI: https://doi.org/10.1016/j.foodchem.2004.01.036
  23. Wong SP, Leong LP, Koh JHW. Antioxidant activities of aqueous extracts of selected plants. Food chemistry. 2006;99(4):775-783. DOI: https://doi.org/10.1016/j.foodchem.2005.07.058
  24. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine. 1999;26(9-10):1231-1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Neto JRL, Uchôa ADA, Moura PA, Filho CMB, Tenório JCG, Silva AG, et al. Phytochemical screening, total phenolic content and antioxidant activity of some plants from Brazilian flora. Journal of Medicinal Plants Research. 2016;10(27):409-416. DOI: https://doi.org/10.5897/JMPR2015.5979
  26. Marinova D, Ribarova F, Atanassova M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the university of chemical technology and metallurgy. 2005;40(3):255-260.
  27. Lu J, Gu G, Hao L, Jin Z, Wang X. Characterization and In vitro antioxidant activity of a polysaccharide from Cordyceps sobolifera. Journal of Food Processing and Preservation. 2016;40(3):447-452. DOI: https://doi.org/10.1111/jfpp.12622
  28. Hieu LT, Son LL, Nguyet NT, Nhung NM, Vu HXA, Man NQ, et al. In vitro antioxidant activity and content of compounds from Curculigo orchioides rhizome. Hue University Journal of Science: Natural Science. 2020;129(1B):71-77. DOI: https://doi.org/10.26459/hueuni-jns.v129i1B.5749
  29. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. A colorimetric method for the determination of sugars. Nature. 1951;168(4265): 167. DOI: https://doi.org/10.1038/168167a0
  30. Khoa TV, Hieu LT, Son LL, Vu HXA, Kiet TT, Thi TTV. Effect of extraction temperatures on in vitro antioxidant activities of polysaccharides from Ophiocordyceps sobolifera. Hue University Journal of Science: Natural Science. 2019;128(1):17-21. DOI: https://doi.org/10.26459/hueuni-jns.v128i1D.5273
  31. Anh PT, Ky PT, Thanh TTD. Quantification of total saponins in Gynostemma pentaphyllum (Thunb.) Makino grown in 3 regions by photometric method. Journal of Pharmacology. 2014;54(2):52-56. (Vietnamese)
  32. Hieu LT, Khoa TV, Son LL, Diep HTN, Nhung NM, Vu HXA, et al. Preliminary study of the antioxidant properties of Ophiocordyceps sobolifera. Indo American Journal of Pharmaceutical Sciences. 2019;6(5):10111–10116.
  33. Jayaprakasha GK, Selvi T, Sakariah KK. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Research International. 2003;36(2):117-122. DOI: https://doi.org/10.1016/S0963-9969(02)00116-3
  34. Babu DR, Rao GN. Antioxidant properties and electrochemical behavior of cultivated commercial Indian edible mushrooms. Journal of Food Science and Technology. 2013;50(2):301-308. DOI: https://doi.org/10.1007/s13197-011-0338-8
  35. Materska M, Perucka I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). Journal of Agricultural and food Chemistry. 2005;53(5):1750-1756. DOI: https://doi.org/10.1021/jf035331k
  36. Wang J, Kan L, Nie S, Chen H, Cui SW, Phillips AO, et al. A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT-Food Science and Technology. 2015;63(1):2-7. DOI: https://doi.org/10.1016/j.lwt.2015.03.109
  37. Castellano G, Torrens F. Information entropy-based classification of triterpenoids and steroids from Ganoderma. Phytochemistry. 2015;116:305-313. DOI: https://doi.org/10.1016/j.phytochem.2015.05.008
  38. Liu XC, Zhu ZY, Tang YL, Wang MF, Wang Z, Liu AJ, et al. Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris. Carbohydrate Polymers. 2016;142:63-72. DOI: https://doi.org/10.1016/j.carbpol.2016.01.040
  39. Jing Y, Cui X, Chen Z, Huang L, Song L, Liu T, et al. Elucidation and biological activities of a new polysaccharide from cultured Cordyceps militaris. Carbohydrate Polymers. 2014;102:288-296. DOI: https://doi.org/10.1016/j.carbpol.2013.11.061
  40. Devi KSP, Roy B, Patra P, Sahoo B, Islam SS, et al. Characterization and lectin microarray of an immunomodulatory heteroglucan from Pleurotus ostreatus mycelia. Carbohydrate Polymers. 2013:94(2):857-865. DOI: https://doi.org/10.1016/j.carbpol.2013.02.017
  41. Mandal EK, Maity K, Maity S, Gantait SK, Maiti S, Maiti TK, et al. Structural characterization of an immunoenhancing cytotoxic heteroglycan isolated from an edible mushroom Calocybe indica var. APK2. Carbohydrate Research. 2011;346(14):2237-2243. DOI: https://doi.org/10.1016/j.carres.2011.07.009
  42. Villares A. Polysaccharides from the edible mushroom Calocybe gambosa: structure and chain conformation of a (1→ 4),(1→ 6)-linked glucan. Carbohydrate Research. 2013;375:153-157. DOI: https://doi.org/10.1016/j.carres.2013.04.017
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 Array