Electromechanical properties of Bi(Mn1/2Ti1/2)O3 doped Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3 materials
PDF (Vietnamese)

Keywords

gốm áp điện cứng
hệ số phẩm chất Qm
Pb0,94Sr0,05La0,01(Zr0,54Ti0,46)0,9975O3 hard piezoelectric ceramic
mechanical quality factor Qm
Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3

How to Cite

1.
Nguyễn VT, Đỗ V Ơn, Lê Đại V, Võ TT. Electromechanical properties of Bi(Mn1/2Ti1/2)O3 doped Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3 materials. hueuni-jns [Internet]. 2025Mar.19 [cited 2025Apr.26];134(1A):151-60. Available from: http://222.255.146.83/index.php/hujos-ns/article/view/7093

Abstract

The solid-phase reaction technique was used to fabricate a Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3 doped Bi(Mn1/2Ti1/2)O3 piezoelectric ceramic system. The material's structure and microstructure were examined by using scanning electron microscopy (SEM) and XRD analysis. The addition of Bi(Mn1/2Ti1/2)O3 to Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3 contributes to the transition of the tetragonal phase to the rhombohedral phase; the average particle size decreases, while the mechanical quality coefficient Qm of the material increases. A product with a composition of 0.97 Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3 – 0.03 Bi(Mn1/2Ti1/2)O3 has the characteristics of hard piezoelectric ceramic with the electromechanical coupling factor kp = 0.59; kt = 0.48; piezoelectric constant d33 = 446 pC/N; mechanical quality factor Qm = 774; phase transition temperature Tm = 265°C. This material exhibits properties comparable with commercial materials such as PZT4 and PZT8. This hard ceramic has the potential for use in power ultrasonic devices.

https://doi.org/10.26459/hueunijns.v134i1A.7093
PDF (Vietnamese)

References

  1. Quang DA, Vuong LD. Enhanced piezoelectric properties of Fe2O3 and Li2CO3 co-doped Pb[(Zr0.48Ti0.52)0.8(Zn1/3Nb2/3)0.125(Mn1/3Nb2/3)0.075]O3 ceramics for ultrasound transducer applications. Journal of Science: Advanced Materials and Devices. 2022;7(2):100436.
  2. Liu W, Cao Y, Wang J, Wang Y, Xi X, Yang J. Piezoelectric properties of 3-1 type porous PMN-PZT ceramics doped with strodium. Materials Science and Engineering: B. 2021;263:114847.
  3. Brzezińska D, Skulski R, Niemiec P, Dercz G. The properties of (1–x)(0.5PZT-0.5PFW)-xPFN ceramics doped by Li. Journal of Alloys and Compounds. 2021;851:156828.
  4. Babu GA, Gowthami S, Varadarajan E, Rawal B, Praveenkumar B. Enhanced piezoelectric properties in Sm-doped 24Pb(In0.5Nb0.5)O3–42Pb(Mg0.335Nb0.665)O3–34PbTiO3 piezoceramics. Journal of Materials Science: Materials in Electronics. 2021;32(3):3264-72.
  5. Guo Q, Meng X, Li F, Xia F, Wang P, Gao X, et al. Temperature-insensitive PMN-PZ-PT ferroelectric ceramics for actuator applications. Acta Materialia. 2021;211:116871.
  6. Park H-Y, Nam C-H, Seo I-T, Choi J-H, Nahm S, Lee H-G, et al. Effect of MnO2 on the Piezoelectric Properties of the 0.75Pb(Zr0.47Ti0.53)O3–0.25Pb(Zn1/3Nb2/3)O3 Ceramics. Journal of the American Ceramic Society. 2010;93(9):2537-40.
  7. Wu Q-c, Hao M-m, Zeng Z-q, Wang X-c, Lv W-z, Fan G-f. Nonlinear dielectric effect of Fe2O3-doped PMS–PZT piezoelectric ceramics for high-power applications. Ceramics International. 2017;43(14):10866-72.
  8. He L-X, Gao M, Li C-E, Zhu W-M, Yan H-X. Effects of Cr2O3 addition on the piezoelectric properties and microstructure of PbZrxTiy(Mg1/3Nb2/3)1−x−yO3 ceramics. Journal of the European Ceramic Society. 2001;21(6):703-9.
  9. Yoo S-Y, Ha J-Y, Yoon S-J, Choi J-W. High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators. Journal of the European Ceramic Society. 2013;33(10):1769-78.
  10. Rema KP, Kumar V. Structure–Property Relationship in Mn-Doped (Pb0.94Sr0.06)(Zr0.53Ti0.47)O3. Journal of the American Ceramic Society. 2008;91(1):164-8.
  11. Li S, Fu J, Zuo R. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors. Ceramics International. 2021;47(14):20117-25.
  12. Kalem V, Timucin M. Structural, piezoelectric and dielectric properties of PSLZT–PMnN ceramics. Journal of the European Ceramic Society. 2013;33(1):105-11.
  13. Brajesh K, Himanshu AK, Sharma H, Kumari K, Ranjan R, Bandhopadhyay SK, et al. Structural, dielectric relaxation and piezoelectric characterization of Sr2+ substituted modified PMS-PZT ceramic. Physica B: Condensed Matter. 2012;407(4):635-41.
  14. Yu Y, Yang J, Wu J, Bian L, Li X, Chen W, et al. Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification. Ceramics International. 2020;46(11, Part B):19103-10.
  15. Du G, Liang R, Wang L, Li K, Zhang W, Wang G, et al. Internal bias field relaxation in poled Mn-doped Pb(Mn1/3Sb2/3)O3–Pb(Zr, Ti)O3 ceramics. 2013;39(7):7703-8.
  16. Zhang B, Qi H, Zuo R. A new low-temperature firable 0.95Pb(ZrxTi1–x )O3 -0.05Bi(Mn1/2Ti1/2)O3 ceramic for high-power applications. Ceramics International. 2017;44.
  17. Huang T, Fu J, Zuo R. A Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3–Bi(Mn2/3Sb1/3)O3 quaternary solid solution ceramic with low sintering temperature, high piezoelectric coefficient and large mechanical quality factor. Journal of Materials Science: Materials in Electronics. 2019;30(10):9540-6.
  18. Fan G, Zeng Z, Jin S, Wu Q, Lv W, Wang X. High field dielectric property and piezoelectric response in PMS-PZT piezoelectric ceramics modified with BiFeO3. Ferroelectrics. 2017;520(1):126-34.
  19. Chen J, Xu Z, Yao X. Effect of bismuth doping on dielectric, piezoelectric and ferroelectric properties of PZT ceramics. Materials Research Innovations. 2010;14:234-7.
  20. Kalem V, çam I, Timuçin M. Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceramics International. 2011;37:1265-75.
  21. Kim S-W, Lee H-C. Development of PZN-PMN-PZT Piezoelectric Ceramics with High d33 and Qm Values. Materials. 2022;15(20).
  22. Ullah A, Ahn CW, Hussain A, Kim IW. The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol–gel technique. Current Applied Physics. 2010;10(6):1367-71.
  23. Peng J, Zeng J, Li G, Zheng L, Ruan X, Huang X, et al. Softening-hardening transition of electrical properties for Fe3+-doped (Pb0.94Sr0.05La0.01)(Zr0.53Ti0.47)O3 piezoelectric ceramics. Ceramics International. 2017;43(16):13233-9.
  24. Maurya D, Yan Y, Priya SJ. Piezoelectric Materials for Energy Harvesting; 2015. p. 143-78.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 Array