Abstract
The solid-phase reaction technique was used to fabricate a Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3 doped Bi(Mn1/2Ti1/2)O3 piezoelectric ceramic system. The material's structure and microstructure were examined by using scanning electron microscopy (SEM) and XRD analysis. The addition of Bi(Mn1/2Ti1/2)O3 to Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3 contributes to the transition of the tetragonal phase to the rhombohedral phase; the average particle size decreases, while the mechanical quality coefficient Qm of the material increases. A product with a composition of 0.97 Pb0.94Sr0.05La0.01(Zr0.54Ti0.46)0.9975O3 – 0.03 Bi(Mn1/2Ti1/2)O3 has the characteristics of hard piezoelectric ceramic with the electromechanical coupling factor kp = 0.59; kt = 0.48; piezoelectric constant d33 = 446 pC/N; mechanical quality factor Qm = 774; phase transition temperature Tm = 265°C. This material exhibits properties comparable with commercial materials such as PZT4 and PZT8. This hard ceramic has the potential for use in power ultrasonic devices.
References
- Quang DA, Vuong LD. Enhanced piezoelectric properties of Fe2O3 and Li2CO3 co-doped Pb[(Zr0.48Ti0.52)0.8(Zn1/3Nb2/3)0.125(Mn1/3Nb2/3)0.075]O3 ceramics for ultrasound transducer applications. Journal of Science: Advanced Materials and Devices. 2022;7(2):100436.
- Liu W, Cao Y, Wang J, Wang Y, Xi X, Yang J. Piezoelectric properties of 3-1 type porous PMN-PZT ceramics doped with strodium. Materials Science and Engineering: B. 2021;263:114847.
- Brzezińska D, Skulski R, Niemiec P, Dercz G. The properties of (1–x)(0.5PZT-0.5PFW)-xPFN ceramics doped by Li. Journal of Alloys and Compounds. 2021;851:156828.
- Babu GA, Gowthami S, Varadarajan E, Rawal B, Praveenkumar B. Enhanced piezoelectric properties in Sm-doped 24Pb(In0.5Nb0.5)O3–42Pb(Mg0.335Nb0.665)O3–34PbTiO3 piezoceramics. Journal of Materials Science: Materials in Electronics. 2021;32(3):3264-72.
- Guo Q, Meng X, Li F, Xia F, Wang P, Gao X, et al. Temperature-insensitive PMN-PZ-PT ferroelectric ceramics for actuator applications. Acta Materialia. 2021;211:116871.
- Park H-Y, Nam C-H, Seo I-T, Choi J-H, Nahm S, Lee H-G, et al. Effect of MnO2 on the Piezoelectric Properties of the 0.75Pb(Zr0.47Ti0.53)O3–0.25Pb(Zn1/3Nb2/3)O3 Ceramics. Journal of the American Ceramic Society. 2010;93(9):2537-40.
- Wu Q-c, Hao M-m, Zeng Z-q, Wang X-c, Lv W-z, Fan G-f. Nonlinear dielectric effect of Fe2O3-doped PMS–PZT piezoelectric ceramics for high-power applications. Ceramics International. 2017;43(14):10866-72.
- He L-X, Gao M, Li C-E, Zhu W-M, Yan H-X. Effects of Cr2O3 addition on the piezoelectric properties and microstructure of PbZrxTiy(Mg1/3Nb2/3)1−x−yO3 ceramics. Journal of the European Ceramic Society. 2001;21(6):703-9.
- Yoo S-Y, Ha J-Y, Yoon S-J, Choi J-W. High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators. Journal of the European Ceramic Society. 2013;33(10):1769-78.
- Rema KP, Kumar V. Structure–Property Relationship in Mn-Doped (Pb0.94Sr0.06)(Zr0.53Ti0.47)O3. Journal of the American Ceramic Society. 2008;91(1):164-8.
- Li S, Fu J, Zuo R. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors. Ceramics International. 2021;47(14):20117-25.
- Kalem V, Timucin M. Structural, piezoelectric and dielectric properties of PSLZT–PMnN ceramics. Journal of the European Ceramic Society. 2013;33(1):105-11.
- Brajesh K, Himanshu AK, Sharma H, Kumari K, Ranjan R, Bandhopadhyay SK, et al. Structural, dielectric relaxation and piezoelectric characterization of Sr2+ substituted modified PMS-PZT ceramic. Physica B: Condensed Matter. 2012;407(4):635-41.
- Yu Y, Yang J, Wu J, Bian L, Li X, Chen W, et al. Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification. Ceramics International. 2020;46(11, Part B):19103-10.
- Du G, Liang R, Wang L, Li K, Zhang W, Wang G, et al. Internal bias field relaxation in poled Mn-doped Pb(Mn1/3Sb2/3)O3–Pb(Zr, Ti)O3 ceramics. 2013;39(7):7703-8.
- Zhang B, Qi H, Zuo R. A new low-temperature firable 0.95Pb(ZrxTi1–x )O3 -0.05Bi(Mn1/2Ti1/2)O3 ceramic for high-power applications. Ceramics International. 2017;44.
- Huang T, Fu J, Zuo R. A Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3–Bi(Mn2/3Sb1/3)O3 quaternary solid solution ceramic with low sintering temperature, high piezoelectric coefficient and large mechanical quality factor. Journal of Materials Science: Materials in Electronics. 2019;30(10):9540-6.
- Fan G, Zeng Z, Jin S, Wu Q, Lv W, Wang X. High field dielectric property and piezoelectric response in PMS-PZT piezoelectric ceramics modified with BiFeO3. Ferroelectrics. 2017;520(1):126-34.
- Chen J, Xu Z, Yao X. Effect of bismuth doping on dielectric, piezoelectric and ferroelectric properties of PZT ceramics. Materials Research Innovations. 2010;14:234-7.
- Kalem V, çam I, Timuçin M. Dielectric and piezoelectric properties of PZT ceramics doped with strontium and lanthanum. Ceramics International. 2011;37:1265-75.
- Kim S-W, Lee H-C. Development of PZN-PMN-PZT Piezoelectric Ceramics with High d33 and Qm Values. Materials. 2022;15(20).
- Ullah A, Ahn CW, Hussain A, Kim IW. The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol–gel technique. Current Applied Physics. 2010;10(6):1367-71.
- Peng J, Zeng J, Li G, Zheng L, Ruan X, Huang X, et al. Softening-hardening transition of electrical properties for Fe3+-doped (Pb0.94Sr0.05La0.01)(Zr0.53Ti0.47)O3 piezoelectric ceramics. Ceramics International. 2017;43(16):13233-9.
- Maurya D, Yan Y, Priya SJ. Piezoelectric Materials for Energy Harvesting; 2015. p. 143-78.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 Array